Skip to main content

Advertisement

Log in

Resorcinol-formaldehyde carbon spheres/polyaniline composite with excellent electrochemical performance for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Well-dispersed resorcinol-formaldehyde-based carbon spheres (RFCs) have been prepared by the polycondensation of resorcinol and formaldehyde with ammonia as catalyst and subsequent carbonization of the obtained polymer. In situ polymerization of the aniline occurred in the suspension of the RFC, and RFC was surrounded by the polyaniline (PANI) wires. The PANI and RFC hybrid network (PRFC) formed gradually. In a three-electrode mode, the specific capacitance (C sp) of PRFC reaches 315 F g−1 at a current density of 1 A g−1 in 2 M H2SO4, much higher than that of pure PANI (225 F g−1) and RFC (121.7 F g−1). Furthermore, the C sp of PRFC retains 80.0 % after 1000 charge-discharge processes at a current density of 5 Ag−1. The enhanced electrochemical performance of the PRFC came from its homogeneous three-dimensional hierarchical network structure, good electric conductivity of the PANI around the RFC, and the synergistic effect between the RFC and PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang HT, Zhang L, Chen J, Su H, Liu FY, Yang WQ (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126

    Article  CAS  Google Scholar 

  2. An GH, Ahn HJ, Hong WK (2015) Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers. J Power Sources 274:536–541

    Article  CAS  Google Scholar 

  3. Wang D, Kong LB, Liu MC, Zhang WB, Luo YC, Kang L (2015) Amorphous Ni-P materials for high performance pseudocapacitors. J Power Sources 274:1107–1113

    Article  CAS  Google Scholar 

  4. Yang MH, Jeong JM, Huh YS, Choi BG (2015) High-performance supercapacitor based on three-dimensional MoS2/grapheme aerogel composites. Compos Sci Technol 121:123–128

    Article  CAS  Google Scholar 

  5. Timperman L, Vigeant A, Anouti M (2015) Eutectic mixture of protic ionic liquids as an electrolyte for activated carbon-based supercapacitors. Electrochim Acta 155:164–173

    Article  CAS  Google Scholar 

  6. Jiang LY, Nelson GW, Kim H, Sim IN, Han SO, Foord JS (2015) Cellulose-derived supercapacitors from the carbonization of filter paper. Chemistry Open 4:586–589

    CAS  Google Scholar 

  7. Xie K, Qin XT, Wang XZ, Wang YN, Tao HS, Wu Q (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352

    Article  CAS  Google Scholar 

  8. Huang H, Zhu WJ, Tao XY, Xia Y, Yu ZY, Fang JW, Gan YP, Zhang WK (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4nanobelts with superior rate capability for advanced lithium-ion batteries. 4:5972–5980

  9. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  10. Dang TD, Banerjee AN, Joo SW, Min BK (2013) Effect of potassium ions on the formation of crystalline manganese oxide nanorods via acidic reduction of potassium permanganate. Ind Eng Chem Res 52:14154–14159

    Article  CAS  Google Scholar 

  11. Kim M, Cho S, Song J, Son S, Jang J (2012) Controllable synthesis of highly conductive polyaniline coated silica nanoparticles using self-stabilized dispersion polymerization. ACS Appl Mate 4:4603–4609

    Article  CAS  Google Scholar 

  12. Li XG, Hou ZZ, Huang MR, Moloney MG (2009) Efficient synthesis of intrinsically conducting polypyrrole nanoparticles containing hydroxyl sulfoaniline as key self-stabilized units. J Phys Chem C 113:21586–21595

    Article  CAS  Google Scholar 

  13. He ZW, Yang J, Lu QF, Lin QL (2013) Effect of structure on the electrochemical performance of nitrogen and oxygen-containing carbon micro/nanospheres prepared from lignin-based composites. ACS Sustainable Chem Eng 1:334–340

    Article  CAS  Google Scholar 

  14. Men TT, Zheng ZB, Wang KZ (2013) Layer-by-layer assembly of graphene oxide and a Ru (II) complex and significant photocurrent generation properties. Langmuir 29:14314–14320

    Article  Google Scholar 

  15. Ertas M, Walczak RM, Das RK, Rinzler AG, Reynolds JR (2012) Supercapacitors based on polymeric dioxypyrroles and single walled carbon nanotubes. Chem Mater 24:433–443

    Article  CAS  Google Scholar 

  16. Wan MX (2009) Some issues related to polyaniline mico-/nanostructures. Macromol Rapid Commun 30:963–975

    Article  CAS  Google Scholar 

  17. Wang DW, Li F, Zhao JP, Ren W, Chen ZG, Tan J, Wu ZS (2009) Composite paper via in situ anodic electropolymerization for high performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  18. Fan H, Wang H, Zhang X, Xu J (2013) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22:2774–2780

    Article  Google Scholar 

  19. Xu GH, Wang N, Wei JY, Lv LL, Zhang J, Chen Z, Xu Q (2012) Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Ind Eng Chem Res 51:14390–14398

    Article  CAS  Google Scholar 

  20. Park JG, Forster JD, Dufresne ER (2010) High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc 132:5960–5961

    Article  CAS  Google Scholar 

  21. Fang Y, GuD ZY, Wu ZX, Li F, Che R (2010) Ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991

    Article  CAS  Google Scholar 

  22. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun:2125–2127

  23. Liang C, Li ZJ, Dai S (2008) Mesoporous carbon materisls: synthesis and modification. Angew Chew Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  24. Lu AH, Hao GP, Sun Q (2011) Can carbon spheres be created through the Stöber method. Angew Chem Int Ed 50:9023–9025

    Article  CAS  Google Scholar 

  25. Tanaka S, Nakao H, Mukai T, Katayama Y, Miyake Y (2012) An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon sphere with microporous structure. J Phys Chem C 116:26791–26799

    Article  CAS  Google Scholar 

  26. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  CAS  Google Scholar 

  27. Pol VG, Shrestha LK, Ariga K (2014) Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. ACS Appl Mater Interfaces 6:10649–10655

    Article  CAS  Google Scholar 

  28. Chen H, Zhou M, Wang Z, Zhao SY, Guan SY (2014) Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. ElectrochimActa 148:187–194

    Article  CAS  Google Scholar 

  29. Guo QX, Yi CQ, Zhu L, Yang Q, Xie Y (2005) Chemical synthesis of cross-linked polyaniline by a novel solvothermal metathesis reaction of p-dichlorobenzene with sodium amide. Polymer 46:3185–3189

    Article  CAS  Google Scholar 

  30. Wang H, Zhu E, Yang JZ, Zhou PP, Sun DP, Tang WH (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116:13013–13019

    Article  CAS  Google Scholar 

  31. Choi JS, Sung JH, Choi HJ, Jhon MS (2005) Effect of organoclay content on physical characteristics of poly(o-ethoxyaniline) nanocomposites. Synth Met 153:129–132

    Article  CAS  Google Scholar 

  32. Elsayed MA, Hall MA, Heslop MJ (2007) Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation. Adsorption 13:299–306

    Article  CAS  Google Scholar 

  33. Ding BH, Wan M, Wei Y (2007) Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Adv Mater 19:465–469

    Article  CAS  Google Scholar 

  34. Gu H, Guo J, He QL, Jiang Y, Huang YN (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6:181–189

    Article  CAS  Google Scholar 

  35. Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428

    Article  CAS  Google Scholar 

  36. Song Y, JL X, Liu XX (2014) Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J Power Sources 249:48–58

    Article  CAS  Google Scholar 

  37. Han HF, Shan CS, Li FH (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882

    Google Scholar 

  38. Dubin S, Gilje S, Wang K, Tung VC, Cha K (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. Acs. Nano 4:3845–3852

    CAS  Google Scholar 

  39. Li ZF, Zhang H, Liu Q, Liu YD, Stanciu L, Xie J (2014) Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 71:257–267

    Article  CAS  Google Scholar 

  40. Zhu CZ, Guo SJ, Fang YX, Han L, Wang E, Dong S (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648–657

    Article  CAS  Google Scholar 

  41. Ramana GV, Srikanth VV, Padya B, Jain PK (2014) Carbon nanotube-polyaniline nanotube core-shell structures for electrochemical applications. EurPolym 57:137–142

    CAS  Google Scholar 

  42. Li J, Xie H, Li Y, Liu J, Li Z (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J power. Source 196:10775–10781

    Article  CAS  Google Scholar 

  43. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    Article  CAS  Google Scholar 

  44. Zhang Z, Li Q, Lai YQ (2014) Confine sulfur in polyaniline-decorated hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries. J Phys Chem C 118:13369–13376

    Article  CAS  Google Scholar 

  45. Deng W, Zhang Y, Yang L, Tan Y, Ma M, Xie Q (2015) Sulfur-doped porous carbon nanosheets as an advanced electrode material for supercapacitors. RSC Adv 5:13046–13051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the first batch of Natural Science Foundation of Shandong Province (ZR2015BM001) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xiang, S., Chang, X. et al. Resorcinol-formaldehyde carbon spheres/polyaniline composite with excellent electrochemical performance for supercapacitors. J Solid State Electrochem 21, 485–494 (2017). https://doi.org/10.1007/s10008-016-3390-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3390-5

Keywords

Navigation