Skip to main content
Log in

Misfit dislocations induced by lithium-ion diffusion in a thin film anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

According to the diffusion kinetics and heteroepitaxial strained layer theory, this paper presents a theoretical model to investigate the generation and distribution of misfit dislocations in a thin film anode under galvanostatic and potentiostatic operations. The results show that the nucleation and density distribution of misfit dislocations largely depend on the thickness of the diffused layer and insertion time. When the thickness is less than a certain critical value, the total strain energy in the electrode is almost insusceptible and yet reduced by misfit dislocations for that of going beyond the critical value. Under potentiostatic operation, the rise range and response speed of the dislocation density are greater and faster. A certain region immediately possesses much lower dislocation density under the electrode surface compared with the region below it. These quantitative results can provide a new perspective into relieving diffusion-induced stress by misfit dislocations with the purpose of improving the mechanical durability of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Cui L, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    Article  CAS  Google Scholar 

  5. Chan CK, Peng H, Liu G, McIlwrath K, Zhang X, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  6. Li X, Cho JH, Li N, Zhang Y, Williams D, Dayeh SA, Picraux ST (2012) Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries. Adv Energy Mater 2:87–93

    Article  CAS  Google Scholar 

  7. Qin G, Ma Q, Wang C (2014) A new route for synthesizing C/LiFePO4/multi-walled carbon nanotube secondary particles for lithium ion batteries. Solid State Ionics 257:60–66

    Article  CAS  Google Scholar 

  8. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38

    Article  CAS  Google Scholar 

  9. Chen R, Zhao T, Wu W, Wu F, Li L, Qian J, Xu R, Wu H, Albishri HM, Al-Bogami AS, El-Hady DA, Lu J, Amine K (2014) Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett 14:5899–5904

    Article  CAS  Google Scholar 

  10. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  11. Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872

    Article  CAS  Google Scholar 

  12. Li X, Fang Q, Li J, Wu H, Liu Y, Wen P (2016) Analytical model for sandwich-lithiation in hollow amorphous silicon nano-anodes coated on carbon nanofibers. J Electrochem Soc 163:A163–A170

  13. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93–A96

    Article  CAS  Google Scholar 

  14. Obrovac MN, Christensen L, Le DB, Dahn JR (2007) Alloy design for lithium-ion battery anodes. J Electrochem Soc 154:A849–A855

    Article  CAS  Google Scholar 

  15. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  16. Li X, Fang Q, Li J, Wu H, Liu Y, Wen P (2015) Diffusion-induced stress and strain energy affected by dislocation mechanisms in a cylindrical nanoanode. Solid State Ionics 281:21–28

    Article  CAS  Google Scholar 

  17. Verbrugge MW, Baker DR, Xiao X, Zhang Q, Cheng YT (2015) Experimental and theoretical characterization of electrode materials that undergo large volume changes and application to the lithium-silicon system. J Phys Chem C 119:5341–5349

    Article  CAS  Google Scholar 

  18. Wang J, Fan F, Liu Y, Jungjohann KL, Lee SW, Mao SX, Zhu T (2014) Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J Electrochem Soc 161:F3019–F3024

    Article  CAS  Google Scholar 

  19. Huggins RA, Nix WD (2000) Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6:57–63

    Article  CAS  Google Scholar 

  20. Huang J, Zhong L, Wang C, Sullivan JP, Xu W, Zhang L, Mao SX, Hudak NS, Liu X, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330:1515–1520

    Article  CAS  Google Scholar 

  21. Wei P, Zhou J, Pang X, Liu H, Deng K, Wang G, Wu Y, Chen B (2014) Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode. J Mater Chem A 2:1128–1136

    Article  CAS  Google Scholar 

  22. Li J, Fang Q, Liu F, Liu Y (2014) Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode. J Power Sources 272:121–127

    Article  CAS  Google Scholar 

  23. Jenkinson AE, Lang, AR, Newkirkl JB (1962) Direct observation of imperfections in crystals, Interscience, New York

  24. Hu S, Li Y, Zheng Y, Chen L (2004) Effect of solutes on dislocation motion—a phase-field simulation. Int J Plast 20:403–425

    Article  Google Scholar 

  25. Van Den Beukel A, Kocks UF (1982) The strain dependence of static and dynamic strain-aging. Acta Metall 30:1027–1034

    Article  CAS  Google Scholar 

  26. Chen B, Zhou J, Zhu J, Liu T, Liu Z (2015) Effect of misfit dislocation on Li diffusion and stress in a phase transforming spherical electrode. J Electrochem Soc 162:H493–H500

    Article  CAS  Google Scholar 

  27. Atkinson A, Jain SC (1992) The energy of systems of misfit dislocations in epitaxial strained layers. Thin Solid Films 222:161–165

    Article  CAS  Google Scholar 

  28. Ning X (1996) Distribution of residual stresses in boron doped p+ silicon films. J Electrochem Soc 143:3389–3393

    Article  CAS  Google Scholar 

  29. Itoh N, Nakau T (1983) Penetration depth of diffusion-induced dislocations. Jpn J Appl Phys 22:1106

    Article  CAS  Google Scholar 

  30. Cheng YT, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460

    Article  CAS  Google Scholar 

  31. Zhang J, Lu B, Song Y, Ji X (2012) Diffusion induced stress in layered Li-ion battery electrode plates. J Power Sources 209:220–227

    Article  CAS  Google Scholar 

  32. Kikuchi A (1997) Calculation of misfit-dislocation density generated by lattice mismatch at the NiSi2-Si Interface. Phys Stat Sol 203:79–86

    Article  CAS  Google Scholar 

  33. Kubby JA, Greene WJ (1994) Imaging extrinsic defects at the NiSi2/Si (111) metal-semiconductor interface. J Vac Sci Technol A 12:2009–2016

    Article  CAS  Google Scholar 

  34. Föll H, Ho PS, KN T (1981) Cross-sectional transmission electron microscopy of silicon-silicide interfaces. J Appl Phys 52:250–255

    Article  Google Scholar 

  35. Föll H, Ho PS, Tu KN (1982) Transmission electron microscopy of the formation of nickel silicides. Phil Mag A 45:31–47

    Article  Google Scholar 

  36. Fukuda Y, Kohama Y, Seki M, Ohmachi Y (1988) Misfit dislocation structures at MBE-grown Si1-xGex/Si interfaces. Jpn J Appl Phys 27:1593

  37. Willis JR, Jain SC, Bullough R (1991) The energy of an array of dislocations: II. Consideration of a capped epitaxial layer. Phil Mag A 64:629–640

    Article  Google Scholar 

  38. Rockett A, Kiely CJ (1991) Energetics of misfit-and threading-dislocation arrays in heteroepitaxial films. Phys Rev B 44:1154–1162

    Article  CAS  Google Scholar 

  39. Hull R, Bean JC (1989) Nucleation of misfit dislocations in strained-layer epitaxy in the GexSi1-x/Si system. J Vat Sci Technol A 7:2580–2585

    Article  CAS  Google Scholar 

  40. Kvam EP, Mayer DM, Humphries CJ (1990) Variation of dislocation morphology with strain in GexSi1-x epilayers on (100) Si. J Mater Res 5:1900–1907

    Article  CAS  Google Scholar 

  41. Narayan J, Sharan S (1991) Mechanism of formation of 60° and 90° misfit dislocations in semiconductor heterostructures. Mater Sci Eng B 10:261–267

    Article  Google Scholar 

  42. Chang KH, Bhattacharya P, Gibala R (1989) Characteristics of dislocations at strained heteroepitaxial InGaAs/GaAs interfaces. J Appl Phys 66:2993–2998

    Article  CAS  Google Scholar 

  43. Bhandakkar TK, Gao H (2010) Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int J Solids Struct 47:1424–1434

    Article  CAS  Google Scholar 

  44. Li J, Lu D, Fang Q, Liu Y, Wen P (2015) Cooperative surface effect and dislocation effect in lithium ion battery electrode. Solid State Ionics 274:46–54

    Article  CAS  Google Scholar 

  45. Zhu J, Zhou J, Chen B, Liu Z, Liu T (2016) Dislocation effect on diffusion-induced stress for lithiation in hollow spherical electrode. J Solid State Electrochem 20:37–46

    Article  CAS  Google Scholar 

  46. Crank J (1980) The mathematics of diffusion. Oxford University Press, Oxford

  47. Van der Merwe JH (1972) Structure of epitaxial crystal interfaces. Surf Sci 31:198–228

    Article  CAS  Google Scholar 

  48. Ning X, Pirouz P (1993) Transition from inclined to in-plane 60° misfit dislocations in a diffuse interface. Cambridge University, England

Download references

Acknowledgments

The authors would like to deeply appreciate the support from the NNSFC (11172094, 1137210, and 11172095), the NCET-11-0122, the Hunan Provincial Science Fund for Distinguished Young Scholars (2015JJ1006), the Fok Ying-Tong Education Foundation, China (141005), and Interdisciplinary Research Project of Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fang, Q., Wu, H. et al. Misfit dislocations induced by lithium-ion diffusion in a thin film anode. J Solid State Electrochem 21, 419–427 (2017). https://doi.org/10.1007/s10008-016-3377-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3377-2

Keywords

Navigation