Skip to main content
Log in

Impedimetric evaluation of hybrid cationic porphyrin/quantum dot multilayer assemblies: a biocompatible interface for calf thymus DNA immobilization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a cationic porphyrin, ascribed as [Ttolyl(P-(C6H5)3)4]4+, where Ttolyl = 5,10,15,20 tetrakistolylporphyrin, was electrostatically assembled with CdTe quantum dots capped with glutathione (GSH) of diameter ~3.28 nm via a layer-by-layer methodology. This multilayer assembly was evaluated as a biocompatible interface with synergic effects for calf thymus double-stranded DNA (CT DNA) immobilization, considering that the hybrid assembly contains a cationic porphyrin with a high binding constant for CT DNA, and quantum dots with polypeptide as a capping agent. The multilayer assembly, ascribed as ITO/{[Ttolyl(P-(C6H5)3)4]4+/CdTe} n (n = 1–5), was characterized by UV-Vis spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The last technique was explored in order to check the adsorption of CT DNA onto the multilayer porphyrin/quantum dot assembly. The difference in electron transfer resistance (ΔR ct) obtained after CT DNA incubations showed the best result for a specific multilayer assembly, n = 3. {[Ttolyl(P-(C6H5)3)4]4+/CdTe}3 showed a good correlation of ΔR ct with the logarithmic concentration of CT DNA, in the range 1.0 × 10−10 to 1.0 × 10−6 M with a limit of detection (LOD) of 1.5 × 10−12 M. Conversely, when the {[Ttolyl(P-(C6H5)3)4]4+/CdTe}3 system was incubated with calf thymus single-stranded DNA and salmon testes DNA, no significant difference in ΔR ct was observed. We conclude that the newly described {[Ttolyl(P-(C6H5)3)4]4+/CdTe} n system is a choice method for the impedimetric determination of CT DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen Y, Zhan F, JF L, Zhang BY, Huang DK, XB X, Zhang YB, Wang MK (2013) Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films 545:327–331

    Article  CAS  Google Scholar 

  2. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31(1):1–10

    Article  CAS  Google Scholar 

  3. Erdem A, Meric B, Kerman K, Dalbasti T, Ozsoz M (1999) Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanalysis 11(18):1372–1376

    Article  CAS  Google Scholar 

  4. Gupta VK, Yola ML, Qureshi MS, Solak AO, Atar N, Üstündağ Z (2013) A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays. Sensors Actuators B Chem 188:1201–1211

    Article  CAS  Google Scholar 

  5. Loo AH, Bonanni A, Pumera M (2013) An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes. Analyst 138(2):467–471

    Article  CAS  Google Scholar 

  6. Canete-Rosales P, Alvarez-Lueje A, Bollo S (2014) Ethylendiamine-functionalized multi-walled carbon nanotubes prevent cationic dispersant use in the electrochemical detection of dsDNA. Sensors Actuators B Chem 191:688–694

  7. Kubat P, Lang K, Anzenbacher P, Jursikova K, Kral V, Ehrenberg B (2000) Interaction of novel cationic meso-tetraphenylporphyrins in the ground and excited states with DNA and nucleotides. J Chem Soc, Perkin Trans 1 6:933–941

    Article  Google Scholar 

  8. Kubat P, Lang K, Kral V, Anzenbacher P (2002) Preprogramming of porphyrin-nucleic acid assemblies via variation of the alkyl/aryl substituents of phosphonium tetratolylporphyrins. J Phys Chem B 106(26):6784–6792

    Article  CAS  Google Scholar 

  9. Kubat P, Lang K, Prochakova K, Anzenbacher P (2003) Self-aggregates of cationic meso-tetratolylporphyrins in aqueous solutions. Langmuir 19(2):422–428

    Article  CAS  Google Scholar 

  10. Lisdat F, Schafer D, Kapp A (2013) Quantum dots on electrodes—new tools for bioelectroanalysis. Anal Bioanal Chem 405(11):3739–3752

    Article  CAS  Google Scholar 

  11. Sheng ZH, Han HY, XF H, Chi C (2010) One-step growth of high luminescence CdTe quantum dots with low cytotoxicity in ambient atmospheric conditions. Dalton Trans 39(30):7017–7020

    Article  CAS  Google Scholar 

  12. Diaz V, Ramirez-Maureira M, Monras JP, Vargas J, Bravo D, Osorio-Roman IO, Vasquez CC, Perez-Donoso JM (2012) Spectroscopic properties and biocompatibility studies of CdTe quantum dots capped with biological thiols. Sci Adv Mater 4(5–6):609–616

    Article  CAS  Google Scholar 

  13. Jagadeeswari S, Paramaguru G, Renganathan R (2014) Synthesis and characterization of free base and metal porphyrins and their interaction with CdTe QDs. J Photochem Photobiol A Chem 276:104–112

    Article  Google Scholar 

  14. Vaishnavi E, Renganathan R (2014) “Turn-on-off-on” fluorescence switching of quantum dots-cationic porphyrin nanohybrid: a sensor for DNA. Analyst 139(1):225–234

    Article  CAS  Google Scholar 

  15. Zhu K, XY H, Ge QY, Sun QJ (2014) Fluorescent recognition of deoxyribonucleic acids by a quantum dot/meso-tetrakis(N-methylpyridinium-4-yl)porphyrin complex based on a photo induced electron-transfer mechanism. Anal Chim Acta 812:199–205

    Article  CAS  Google Scholar 

  16. Zhao D, Fan Y, Gao F, Yang T-m (2015) “Turn-off-on” fluorescent sensor for (N-methyl-4-pyridyl) porphyrin-DNA and G-quadruplex interactions based on ZnCdSe quantum dots. Anal Chim Acta 888:131–137

    Article  CAS  Google Scholar 

  17. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    Article  CAS  Google Scholar 

  18. Ziolkowski R, Olejniczak AB, Gorski L, Janusik J, Lesnikowski ZJ, Malinowska E (2012) Electrochemical detection of DNA hybridization using metallacarborane unit. Bioelectrochemistry 87:78–83

    Article  CAS  Google Scholar 

  19. Wang S, Li L, Jin H, Yang T, Bao W, Huang S, Wang J (2013) Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens Bioelectron 41:205–210

    Article  CAS  Google Scholar 

  20. Hu Y, Li F, Han D, Wu T, Zhang Q, Niu L, Bao Y (2012) Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide. Anal Chim Acta 753:82–89

    Article  CAS  Google Scholar 

  21. Shervedani RK, Pourbeyram S (2010) Electrochemical determination of calf thymus DNA on Zr(IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer. Bioelectrochemistry 77(2):100–105

    Article  CAS  Google Scholar 

  22. Bonanni A, del Valle M (2010) Use of nanomaterials for impedimetric DNA sensors: a review. Anal Chim Acta 678(1):7–17

    Article  CAS  Google Scholar 

  23. Fojta M, Kostecka P, Trefulka MR, Havran L, Palecek E (2007) “Multicolor” electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes. Anal Chem 79(3):1022–1029

    Article  CAS  Google Scholar 

  24. Palecek E, Fojta M (2001) Detecting DNA hybridization and damage. Anal Chem 73(3):74A–83A

    CAS  Google Scholar 

  25. Spires JB, Peng H, Williams D, Travas-Sejdic J (2011) An improved terthiophene conducting polymer for DNA-sensing. Electrochim Acta 58:134–141

    Article  CAS  Google Scholar 

  26. Serpi C, Voulgaropoulos A, Girousi S (2013) Electrochemical study of dsDNA on carbon nanotubes paste electrodes applying cyclic and differential pulse voltammetry. Central European Journal of Chemistry 11(3):413–423

    CAS  Google Scholar 

  27. Thangaraj R, Kumar AS (2013) Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17(3):583–590

    Article  CAS  Google Scholar 

  28. Yang T, Guo X, Ma Y, Li Q, Zhong L, Jiao K (2013) Electrochemical impedimetric DNA sensing based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite. Colloids Surf B Biointerfaces 107:257–261

    Article  CAS  Google Scholar 

  29. Barcelo F, Capo D, Portugal J (2002) Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Res 30(20):4567–4573

    Article  CAS  Google Scholar 

  30. Garcia C, Fuenzalida F, Ruiz D, Jesus Aguirre M (2014) Electrochemical, spectroscopic and morphological characterization of electrostatic self-assembled hybrids of tetracationic phosphonium porphyrins and CdTe quantum dots. J Appl Electrochem 44(12):1345–1353

    Article  CAS  Google Scholar 

  31. Garcia C, Diaz C, Araya P, Isaacs F, Ferraudi G, Lappin AG, Jesus Aguirre M, Isaacs M (2014) Electrostatic self-assembled multilayers of tetrachromatedmetalloporphyrins/polyoxometalateand its electrocatalytic properties in oxygen reduction. Electrochim Acta 146:819–829

    Article  CAS  Google Scholar 

  32. Garcia M, Carfuman K, Diaz C, Garrido C, Osorio-Roman I, Aguirre MJ, Isaacs M (2012) Multimetallic porphyrins/polyoxotungstate modified electrodes by layer-by-layer method: electrochemical, spectroscopic and morphological characterization. Electrochim Acta 80:390–398

    Article  CAS  Google Scholar 

  33. Bazzan G, Smith W, Francesconi LC, Drain CM (2008) Electrostatic self-organization of robust porphyrin-polyoxometalate films. Langmuir 24(7):3244–3249

    Article  CAS  Google Scholar 

  34. Jin H, Choi S, Velu R, Kim S, Lee HJ (2012) Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells. Langmuir 28(12):5417–5426

    Article  CAS  Google Scholar 

  35. Wang HL, Sun Q, Chen M, Miyake J, Qian DJ (2011) Layer-by-layer assembly and characterization of multilayers of a manganese porphyrin linked poly(4-vinylpyridinium) derivative and poly(styrenesulfonic acid-o-maleic) acid. Langmuir 27(16):9880–9889

    Article  CAS  Google Scholar 

  36. Fernandes DM, Ghica ME, Cavaleiro AMV, Brett CMA (2011) Electrochemical impedance study of self-assembled layer-by-layer iron-silicotungstate/poly(ethylenimine) modified electrodes. Electrochim Acta 56(23):7940–7945

    Article  CAS  Google Scholar 

  37. Ozmen M, Maltas E, Patir IH, Bayrakci M (2013) Combined voltammetric and spectroscopic investigation of binding interaction between nifedipine and human serum albumin on polyelectrolyte modified ITO electrode. Electrochim Acta 111:535–542

    Article  CAS  Google Scholar 

  38. Hens Z, Gomes WP (1999) The electrochemical impedance of one-equivalent electrode processes at dark semiconductor/redox electrodes involving charge transfer through surface states. 2. The n-GaAs/Fe3+ system as an experimental example. J Phys Chem B 103(1):130–138

    Article  CAS  Google Scholar 

  39. Díaz C, García C, Iturriaga-Vásquez P, Aguirre MJ, Muena JP, Contreras R, Ormazábal-Toledo R, Isaacs M (2013) Experimental and theoretical study on the oxidation mechanism of dopamine in n-octyl pyridinium based ionic liquids–carbon paste modified electrodes. Electrochim Acta 111(0):846–854

    Article  Google Scholar 

  40. Liang WJ, Liu ZQ, Liu SP, Yang JD, He YQ (2014) A novel surface modification strategy of CdTe/CdS QDs and its application for sensitive detection of ct-DNA. Sensors Actuators B Chem 196:336–344

    Article  CAS  Google Scholar 

  41. Miranda-Castro R, de-los-Santos-Alvarez P, MJ L-C, AJ M-O, Tunon-Blanco P (2007) Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Anal Chem 79(11):4050–4055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Camilo García thanks the FONDECYT program regarding Initiation FONDECYT grant 11150434 and Postdoctoral Project 3130328. M. J Aguirre expresses thanks regarding FONDECYT grant 1160324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo García.

Electronic supplementary material

Figure S1

Cyclic voltammetry 2 mM [Ru(NH3)5Cl]Cl2 in 10 mM Tris, pH = 7.0. Scan rate 50 mv/s. (GIF 64 kb)

High resolution image (GIF 64 kb) (TIFF 7611 kb)

Fig. S2

Nyquist plot of ITO/{[Ttolyl(P-(C6H5)3)4]4+/CdTe}n, n = 1–5, in the presence of 2.0 mM [Ru(NH3)5Cl]Cl2, 10.0 mM Tris with a pH of 7.0, and 0.1 M KCl. (GIF 60 kb)

High resolution image (TIFF 7611 kb)

Figure S3

UV-Vis spectra of ITO/{[Ttolyl(P-(C6H5)3)4]4+/CdTe (d = 3.28 nm)}3 after incubation with different genomic DNA at the same concentration of 1.0 × 10−6 M. (GIF 60 kb)

High resolution image (TIFF 7611 kb)

Figure S4

Cyclic voltammetry of ITO/{[Ttolyl(P-(C6H5)3)4]4+/CdTe (d = 3.28 nm)}3 after incubation with different genomic DNA in 10 mM Tris, pH = 7.0. Scan rate 50 mv/s. (GIF 50 kb)

High resolution image (TIFF 7611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, C., Navarro, F., Ruíz-León, D. et al. Impedimetric evaluation of hybrid cationic porphyrin/quantum dot multilayer assemblies: a biocompatible interface for calf thymus DNA immobilization. J Solid State Electrochem 21, 243–253 (2017). https://doi.org/10.1007/s10008-016-3367-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3367-4

Keywords

Navigation