Skip to main content
Log in

Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg–linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ratledge C (1994) Biochemistry of microbial degradation. Springer, Berlin

    Book  Google Scholar 

  2. Caneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage, the Getty Conservation Institute, Los Angeles

  3. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 47–55 and references therein

  4. Gargani G (1968) Fungus contamination of Florence art masterpieces before and after the 1966 disaster. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp. 252–257

    Google Scholar 

  5. Seves AM, Sora S, Ciferr O (1996) The microbial colonization of oil paintings—a laboratory investigation. Int Biodeter Biodegr. 37:215–224

    Article  CAS  Google Scholar 

  6. Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. University of Lisbon

  7. Strzelczyk AB (2004) Observations on aesthetic and structural changes induced in polish historic objects by microorganisms. Int Biodeter Biodegr. 53:151–156

    Article  Google Scholar 

  8. López-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, Martín-Sánchez I (2013) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29:301–314

    Article  Google Scholar 

  9. Koszewski A, Rymuza Z, Reuther F (2008) Evaluation of nanomechanical, nanotribological and adhesive properties of ultrathin polymer resist film by AFM. Micro Engn 85:1189–1192

    Article  CAS  Google Scholar 

  10. Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Meth 45:77–87

    Article  CAS  Google Scholar 

  11. Florian MLE (1996) The role of the conidia of fungi in fox spots. Stud Conserv 41:65–75

    Google Scholar 

  12. Arai H, Matsui N, Matsumura N, Murakita H (1988) Biochemical investigations on the formation mechanisms of foxing. Stud Conserv 33:11–12

    Article  Google Scholar 

  13. Arai H, Matsumura N, Murakita H (1990) Microbiological studies on the conservation of paper and related cultural properties: part 9, induction of artificial foxing. Science for Conservation 29:25–34

    Google Scholar 

  14. Hayashi T, Namili M (1986) Role of sugar fragmentation in early stage browning of amino-carbonyl reaction of sugars with amino acids. Agr Biol Chem Tokyo 50:1965–1970

    CAS  Google Scholar 

  15. Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration, 2 edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Bock E, Sand W (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514

    CAS  Google Scholar 

  17. Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45

    CAS  Google Scholar 

  18. Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Wolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610

    Article  CAS  Google Scholar 

  19. Child AM (1995) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30

    Google Scholar 

  20. Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(2007):1090–1100

    Article  CAS  Google Scholar 

  21. Kinderlerer JL (1994) Degradation of the lauric acid oils. Int Biodeter Biodegr 33(1994):345–354

    Article  CAS  Google Scholar 

  22. van den Berg JDJ, van den Berg KJ, Boon JJ (2002) Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry. J Chromatogr A 950:195–211 and references therein

    Article  Google Scholar 

  23. Lefèvre M (1974) La ‘maladie verte’ de Lascaux. Stud Conserv 19:126–156

    Google Scholar 

  24. Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69

    CAS  Google Scholar 

  25. Breitbach AM, Rocha JC, Gaylarde CC (2011) Influence of pigment on biodeterioration of acrylic paint films in southern Brazil. J Coat Technol Res 8:619–628

    Article  CAS  Google Scholar 

  26. Keune K, van Loon A, Boon JJ (2011) SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal 17:696–701

    Article  CAS  Google Scholar 

  27. Meilunas RJ, Bentsen JG, Steinberg A (1990) Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv 35:33–51

    CAS  Google Scholar 

  28. Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M (2008) Attenuated total reflection micro FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal Bioanal Chem 392:65–76

    Article  CAS  Google Scholar 

  29. Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T (2009) Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta 79:419–428

    Article  Google Scholar 

  30. Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1–86

    CAS  Google Scholar 

  31. Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and Dropletst, 2 edn. Springer, Berlin-Heidelberg

    Google Scholar 

  32. Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631

    Google Scholar 

  33. Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods for Archaeometry, conservation and restoration (monographs in electrochemistry series Scholz F edit). Springer, Berlin-Heidelberg

    Book  Google Scholar 

  34. Doménech-Carbó A (2010) Electrochemistry for conservation science. J Solid State Electr 14:349–351

    Article  Google Scholar 

  35. Matteini M, Moles A (1989) La Chimica nel Restauro. Nardini, Firenze

    Google Scholar 

  36. Gettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover Publications, New York

    Google Scholar 

  37. Cennini C (1982) Il libro dell’ arte. Akal, Madrid

    Google Scholar 

  38. Cepriá G, García-Gareta E, Pérez-Arantegui J (2005) Cadmium yellow detection and quantification by voltammetry of immobilized microparticles. Electroanalysis 17:1078–1084

    Article  Google Scholar 

  39. Domínguez I, Doménech-Carbó A, Cerisuelo JP, López-Carballo G, Henández-Muñoz P, Gavara R (2014) Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films. J Solid State Electrochem 18:2099–2110

    Article  Google Scholar 

  40. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  Google Scholar 

  41. Chang CM, Powrie WD, Fennema O (1977) Microstructure of egg yolk. J Food Sci 42:1193–1200

    Article  CAS  Google Scholar 

  42. Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671

    Article  CAS  Google Scholar 

  43. Boehm S, Abaturov LV (1977) Structural changes of met-haemoglobin by dehydration. FEBS Lett 77:21–24

    Article  CAS  Google Scholar 

  44. Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160

    CAS  Google Scholar 

  45. Koper A, Grabarczyk M (2012) Simultaneous voltammetric determination of trace bismuth(III) and cadmium(II) in water samples by adsorptive stripping voltammetry in the presence of cupferron. J Electroanal Chem 681:1–5

    Article  CAS  Google Scholar 

  46. Zakharchuk N, Meyer S, Lange B, Scholz F (2000) A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta 73:667–704

    CAS  Google Scholar 

  47. Komorsky-Lovric S, Lovric M, Bond AM (1992) Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta 258:299–305

    Article  CAS  Google Scholar 

  48. Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16:535–543

    Article  CAS  Google Scholar 

  49. Meyer B, Ziemer B, Scholz F (1995) In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem 392:79–83

    Article  Google Scholar 

  50. Hasse U, Scholz F (2001) In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun 3:429–434

    Article  CAS  Google Scholar 

  51. Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579

    Article  Google Scholar 

  52. Eissler RL, Princen RH (1972) The interface between reactive pigment and binder matrix. J Electroanal Chem 37:327–336

    Article  CAS  Google Scholar 

  53. Kuznetsov AM, Ulstrup J (1989) Protein dynamics and electronic fluctuation effects in electron transfer reactions of membrane-bound proteins and metalloprotein complexes. J Electroanal Chem 275:289–305

    Article  Google Scholar 

  54. Colletti LP, Teklay D, Stickney JL (1994) Thin-layer electrochemical studies of the oxidative underpotential deposition of sulfur and its application to the electrochemical atomic layer epitaxy deposition of CdS. J Electroanal Chem 369:145–152

    Article  CAS  Google Scholar 

  55. Gulaboski R, Mirceski V, Bogeski I, Hoth M (2012) Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16:2315–2328

    Article  CAS  Google Scholar 

  56. Guidelli R, Becucci L (2011) Ion transport across biomembranes and model membranes. J Solid State Electrochem 15:1459–1470

    Article  CAS  Google Scholar 

  57. Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135

    Article  CAS  Google Scholar 

  58. Rossi M, Alamprese C, Ratti S (2007) Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem 102:812–817

    Article  CAS  Google Scholar 

  59. Ziyatdinova G, Morozov M, Budnikov H (2012) MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J Solid State Electrochem 16:2441–2447

    Article  CAS  Google Scholar 

  60. Madani A, Nessark B, Boukherroub R, Chehimi MM (2011) Preparation and electrochemical behaviour of PPy–CdS composite films. J Electroanal Chem 650:176–181

    Article  CAS  Google Scholar 

  61. Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angeles

  62. van der Weerd J, van Loon A, Boon JJ (2005) FTIR studies of the effects of pigments on the aging of oil. Stud Conserv 50:3–22

    Article  Google Scholar 

  63. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin 39:549–559

    Article  CAS  Google Scholar 

  64. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym 7:207–221

    Article  CAS  Google Scholar 

  65. Furlan PY, Scott SA, Peaslee MH (2007) FTIR-ATR study of pH effects on egg albumin secondary structure. Spectrosc Lett 40:475–482

    Article  CAS  Google Scholar 

  66. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry-US 29:3303–3308

    Article  CAS  Google Scholar 

  67. Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X (2012) Structure and biodegradation mechanism of milled B. mori silk particles. Biomacromolecules 13:2503–2512

    Article  CAS  Google Scholar 

  68. Anton M (2013) Egg yolk: structures, functionalities and processes. J Sci Food Agr 93:2871–2880

    Article  CAS  Google Scholar 

  69. Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210

    Article  CAS  Google Scholar 

  70. Kumpula LS, Kumpula JM, Taskinen MR, Jauhiainen M, Kaski K, Ala-Korpela M (2008) Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Chem Phys Lipids 155:57–62 and references therein

    Article  CAS  Google Scholar 

  71. Schneider H, Morrod RS, Colvin JR, Tattrie NH (1973) The lipid core model of lipoproteins. Chem Phys Lipids 10:328–353

    Article  CAS  Google Scholar 

  72. Doménech-Carbó MT, Osete-Cortina L, de la Cruz-Cañizares J, Bolívar-Galiano F, Romero-Noguera J, Martín-Sánchez I, Fernández-Vivas MA (2006) Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pirolisis-gas chromatography-mass spectrometry and gas chromatography-mass spectrometry. Anal Bioanal Chem 385:1265–1280

    Article  Google Scholar 

Download references

Acknowledgments

This work has been performed by members of the microcluster Grupo de análisis científico de bienes culturales y patrimoniales y estudios de ciencia de la conservación (Ref. 1362) belonging to the Valencia International Campus of Excellence. Financial support is gratefully acknowledged from the Spanish “I+D+I MICINN” projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P supported by ERDF funds. The authors wish to thank Dr. José Luis Moya López and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politècnica de València) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Additional information

Dedicated with deep admiration to Milivoj Lovrić and Šebojka Komorsky-Lovrić on the occasion of their 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Miranda, A.S., Doménech-Carbó, A., Doménech-Carbó, M.T. et al. Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. J Solid State Electrochem 20, 3287–3302 (2016). https://doi.org/10.1007/s10008-016-3349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3349-6

Keywords

Navigation