Skip to main content
Log in

Lithium intercalation into disordered carbon/SiCN composite. Part 2: Raman spectroscopy and 7Li MAS NMR investigation of lithium storage sites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Within this work, we analyze the lithium storage sites within carbon/silicon carbonitride (SiCN) composites. Commercial carbons, HD3 (hard carbon) and LD1N and LD2N (soft carbons), of varying porosity are impregnated with polysilazane (HTT 1800) and pyrolysed at 1100 °C. It is found in the first part of this study (Graczyk-Zajac et al. J Solid State Electrochem 19:2763–2769, 2015) that the initial porosity of the carbon phase plays an important role in determining the lithium insertion capacity and rate capability of the composite material. By applying Raman spectroscopy and solid-state 7Li MAS NMR on pristine, lithiated, and delithiated samples, we investigate the lithium storage sites within the composite materials. By means of Raman spectroscopy, it has been found that lithium storage in hard carbon-derived composites occurs in a significant extent via adsorption-like process within unorganized carbon, whereas for the soft carbon composites, storage in turbostratic carbon is identified. 7Li solid-state NMR confirms these findings revealing that more than 33 % of lithium stored in HD3/SiCN is adsorbed in ionic form at the surface and in pores of the composite, while around 38 % is stored between carbon layers. LD1N and LD2N composites store more than 50 % of lithium in the intercalation-type sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763

    Article  CAS  Google Scholar 

  2. Graczyk-Zajac M, Wimmer M, Neumann C, Riedel R (2015) Lithium intercalation into SiCN/disordered carbon composite. Part 1: influence of initial carbon porosity on cycling performance/capacity. J Solid State Electrochem 19:2763–2769

    Article  CAS  Google Scholar 

  3. Kolb R, Fasel C, Liebau-Kunzmann V, Riedel R (2006) SiCN/C-ceramic composite as anode material for lithium ion batteries. J Eur Ceram Soc 26(16):3903–3908

    Article  CAS  Google Scholar 

  4. Wilamowska M, Graczyk-Zajac M, Riedel R (2013) Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. J Power Sources 24:80–86

    Article  Google Scholar 

  5. Graczyk-Zajac M, Fasel C, Riedel R (2011) Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. J Power Sources 196(15):6412–6418

    Article  CAS  Google Scholar 

  6. Graczyk-Zajac M, Reinold LM, Kaspar J, Sasikumar PVW, Soraru G-D, Riedel R (2015) New insights into understanding irreversible and reversible lithium storage within SiOC and SiCN ceramics. Nanomaterials 5(1):233–245

    Article  CAS  Google Scholar 

  7. David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998. doi:10.1038/ncomms10998

    Article  CAS  Google Scholar 

  8. David L, Shareef KM, Abass MA, Singh G (2016) Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor electrode. RSC Adv 6(59):53894–53902. doi:10.1039/C6RA08244K

    Article  CAS  Google Scholar 

  9. Baek S-H, Reinold LM, Graczyk-Zajac M, Riedel R, Hammerath F, Buchner B, Grafe H-J (2014) Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance. J Power Sources 253:342–348

    Article  CAS  Google Scholar 

  10. Haaks M, Kaspar J, Franz A, Graczyk-Zajac M, Riedel R, Vogel M (2016) 7Li NMR studies of lithium ion dynamics in polymer-derived silicon oxycarbide ceramics. Solid State Ionics 287:28–35

    Article  CAS  Google Scholar 

  11. Fukui H, Hisashi O, Hino T, Kanamura K (2010) A Si-O-C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. Appl Mater Interfaces 4:998–1008

    Article  Google Scholar 

  12. Fukui H, Ohsuka H, Hino T, Kanamura K (2013) Silicon oxycarbides in hard-carbon microstructures and their electrochemical lithium storage. J Electrochem Soc 160(8):A1276–A1281

    Article  CAS  Google Scholar 

  13. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poeschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742

    Article  CAS  Google Scholar 

  14. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64(7):075414–075414

    Article  Google Scholar 

  15. Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J Mater Chem A 1(12):3826–3836

    Article  CAS  Google Scholar 

  16. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2006) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291

    Article  Google Scholar 

  17. Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A 59(59):2267–2276

  18. Sethuraman VA, Hardwick LJ, Srinivasan V, Kostecki R (2010) Surface structural disordering in graphite upon lithium intercalation/deintercalation. J Power Sources 195:3655–3660

    Article  CAS  Google Scholar 

  19. Sole C, Drewett NE, Hardwick LJ (2014) In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss 172:223–237

    CAS  Google Scholar 

  20. Hardwick LJ, Buqa H, Novak P (2006) Graphite surface disorder detection using in situ Raman microscopy. Solid State Ionics 177:2801–2806

    Article  CAS  Google Scholar 

  21. Novak P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Würsig A (2005) Advanced in situ characterization methods applied to carbonaceous materials. J Power Sources 146:15–20

    Article  CAS  Google Scholar 

  22. Hardwick LJ, Hahn M, Ruch P, Holzapfel M, Scheifele W, Buqa H, Krumeich F, Novák P, Kötz R (2006) An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochim Acta 52:675–680

    Article  CAS  Google Scholar 

  23. Inaba M, Yoshida H, Ogumi Z (1996) In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures. J Electrochem Soc 143(8):2572–2578

    Article  CAS  Google Scholar 

  24. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197

    Article  CAS  Google Scholar 

  25. Xing WB, Xue JS, Zheng T, Gibaud A, Dahn JR (1996) Correlation between lithium intercalation capacity and microstructure in hard carbons. J Electrochem Soc 143(11):3482–3491

    Article  CAS  Google Scholar 

  26. Baddour-Hadjean R, Pereira-Ramos J-P (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319

    Article  CAS  Google Scholar 

  27. Azuma H, Imoto H, Yamada SI, Sekai K (1999) Advanced carbon anode materials for lithium ion cells. J Power Sources 81-82:1–7

    Article  CAS  Google Scholar 

  28. Letellier M, Chevallier F, Béguin F (2006) In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. J Phys Chem Solids 67:1228–1232

    Article  CAS  Google Scholar 

  29. Letellier M, Chevallier F, Béguin F, Frackowiak E, Rouzaud J-N (2004) The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65:245–251

    Article  CAS  Google Scholar 

  30. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264(5158):556–558. doi:10.1126/science.264.5158.556

    Article  CAS  Google Scholar 

  31. Alcantara R, Ortiz GF, Lavela P, Tirado JL, Stoyanova R, Zhecheva E (2006) EPR, NMR, and electrochemical studies of surface-modified carbon microbeads. Chem Mater 18(9):2293–2301

    Article  CAS  Google Scholar 

  32. Takami N, Satoh A, Oguchi M, Sasaki H, Ohsaki T (1997) 7Li NMR and ESR analysis of lithium storage in a high-capacity perylene-based disordered carbon. J Power Sources 68(2):283–286

    Article  CAS  Google Scholar 

  33. Mori Y, Iriyama T, Hashimoto T, Yamazaki S, Kawakami F, Shiroki H, Yamabe T (1995) Lithium doping/undoping in disordered coke carbons. J Power Sources 56(2):205–208

    Article  CAS  Google Scholar 

  34. Tatsumi K, Akai T, Imamura T, Zaghib K, Iwashita N, Higuchi S, Sawada Y (1996) 71i-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads. J Electrochem Soc 143(6):1923–1930

    Article  CAS  Google Scholar 

  35. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous. Mater Sci 270(5236):590–593

    CAS  Google Scholar 

  36. Guérin K, Ménétrier M, Février-Bouvier A, Flandrois S, Simon B, Biensan P (2000) A 7Li NMR study of a hard carbon for lithium–ion rechargeable batteries. Solid State Ionics 127:187–198

    Article  Google Scholar 

  37. Chevallier F, Letellier M, Morcrette M, Tarascon J-M, Frackowiak E, Rouzaud J-N, Béguin F (2003) In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid-State Lett 6(11):A225–A228

    Article  CAS  Google Scholar 

  38. Yoshio M, Brodd R, Kozawa A (eds) (2009) Lithium ion batteries science and technologies. Springer, New York

  39. Zheng T, Xue JS, Dahn JR (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8(2):389–393

    Article  CAS  Google Scholar 

  40. Reinold LM, Yamada Y, Graczyk-Zajac M, Munakata H, Kanamura K, Riedel R (2015) The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries. J Power Sources 282:409–415

    Article  CAS  Google Scholar 

  41. Flandrois S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37(2):165–180

    Article  CAS  Google Scholar 

  42. Kroll P (2011) Tracing reversible and irreversible Li insertion in SiCO ceramics with modeling and Ab-initio simulations. MRS Online Proc Libr 1313:1–6

    Article  Google Scholar 

  43. Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by 7Li NMR. J Power Sources 162(2):1322–1328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the German Research Foundation (DFG) SFB 595/A4 and SFB 595/B9 as well as SPP1473/J8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Graczyk-Zajac.

Electronic supplementary material

Fig. S1

(DOCX 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graczyk-Zajac, M., Wimmer, M., Xu, Y. et al. Lithium intercalation into disordered carbon/SiCN composite. Part 2: Raman spectroscopy and 7Li MAS NMR investigation of lithium storage sites. J Solid State Electrochem 21, 47–55 (2017). https://doi.org/10.1007/s10008-016-3337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3337-x

Keywords

Navigation