Skip to main content

Advertisement

Log in

Enhancing effect of boron trifluoride diethyl etherate electrolytes on capacitance performance of electropolymerized poly[poly(N-vinyl-carbazole)] films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, poly[poly(N-vinyl-carbazole)] (PPVK) films electrodeposited in tetrahydrofuran (THF) containing 12 % boron trifluoride diethyl etherate (BFEE) were studied as electrode active material for supercapacitors. The morphology and thermal property were characterized by SEM, atomic force microscopy (AFM), and thermogravimetry (TG), respectively. The electrochemical capacitive behaviors of the PPVK films were also investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The electrochemical results showed that the specific capacitance of PPVK films in CH3CN solution was about 126 mF cm−2 at 1.5 mA cm−2 and the capacitance retention was only 14.4 % after 1000 cycles. It was exciting to improve the specific capacitance up to 169.3 mF cm−2 at 1.5 mA cm−2 and to make the cyclic stability increase to 81.8 % capacitance retention after 5000 cycles when the equivalent BFEE was added into the CH3CN solution containing 0.05 M Bu4NBF4 electrolyte. These results clearly demonstrated that BFEE was an efficient promoter for the enhancement of the capacitance performance of PPVK films. Therefore, with the help of BFEE electrolyte, the PPVK films have potential application as capacitive materials in high-performance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  3. Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles-a review. Int J Life Cycle Ass 17:997–1014

    Article  CAS  Google Scholar 

  4. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  5. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotech 5:651–654

    Article  CAS  Google Scholar 

  6. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic lenum Publishers, New York

    Book  Google Scholar 

  7. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  8. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotech 6:232–236

    Article  CAS  Google Scholar 

  9. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer Acdemic Publishers, The Netherlands

    Book  Google Scholar 

  10. Inzelt G (2012) Conducting polymers: a new era in electrochemistry. In: Scholz F (ed) Monographs in electrochemistry, 2nd edn. Springer, Heidelberg Berlin

    Google Scholar 

  11. Malinauskas A, Malinauskiene J, Ramanavičius A (2005) Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 16:R51

    Article  CAS  Google Scholar 

  12. Dai TY, Tang R, Yue XX, Xu L (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. Chin J Polym Sci 33:1018–1027

    Article  CAS  Google Scholar 

  13. Tang G, Jiang ZG, Li X (2014) Simultaneous functionalization and reduction of graphene oxide with polyetheramine and its electrically conductive epoxy nanocomposites. Chin J Polym Sci 32:975–985

    Article  CAS  Google Scholar 

  14. Moniruzzaman M, Sahoo S, Ghosh D, Das CK, Singh R (2013) Preparation and characterization of polypyrrole/modified multiwalled carbon nanotube nanocomposites polymerized in situ in the presence of barium titanate. J Appl Polym Sci 128:698–705

    Article  CAS  Google Scholar 

  15. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  16. Liew SY, Thielemans W, Walsh DA (2014) Polyaniline-and poly (ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem 18:3307–3315

    Article  CAS  Google Scholar 

  17. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    Article  CAS  Google Scholar 

  18. Ma X, Zhou W, Mo D, Hou J, Xu J (2015) Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochim Acta 176:1302–1312

    Article  CAS  Google Scholar 

  19. Zhou Q, Zhu D, Ma X, Xu J, Zhou W, Zhao F (2016) High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Adv 6:29840–29847

    Article  CAS  Google Scholar 

  20. Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J (2016) Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 8:3776–3783

    Article  CAS  Google Scholar 

  21. Raj RP, Ragupathy P, Mohan S (2015) Remarkable capacitive behavior of a Co3O4-polyindole composite as electrode material for supercapacitor applications. J Mater Chem A 3:24338–24348

    Article  CAS  Google Scholar 

  22. Zhou X, Wang A, Pan Y, Yu C, Zou Y, Zhou Y, Chen Q, Wu S (2015) Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in allsolid-state flexible supercapacitors. J Mater Chem A 3:13011–13015

    Article  CAS  Google Scholar 

  23. Zhou W, Ma X, Jiang F, Zhu D, Xu J, Lu B, Liu C (2014) Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochim Acta 138:270–277

    Article  CAS  Google Scholar 

  24. Ma X, Zhou W, Mo D, Zhang K, Wang Z, Jiang F, Hu D, Dong L, Xu J (2015) Electrochemical preparation of poly(2, 3-dihydrothieno[3, 4-b][1, 4]dioxin-2-yl) methanol)/carbon fiber core/shell structure composite and its high capacitance performance. J Electroanal Chem 743:53–59

    Article  CAS  Google Scholar 

  25. Cebeci FC, Sezer E, Sarac AS (2009) A novel EDOT-nonylbithiazole-EDOT based comonomer as an active electrode material for supercapacitor applications. Electrochim Acta 54:6354–6360

    Article  CAS  Google Scholar 

  26. Estrada LA, Liu DY, Salazar DH, Dyer AL, Reynolds JR (2012) Poly[bis-EDOT-Isoindigo]: an electroactive polymer applied to electrochemical supercapacitors. Macromolecules 45:8200–8211

    Article  Google Scholar 

  27. Mo D, Zhou W, Ma X, Xu J, Zhu D, Lu B (2014) Electrochemical synthesis and capacitance properties of a novel poly(3, 4-ethylenedioxythiophene bis-substituted bithiophene) electrode material. Electrochim Acta 132:67–74

    Article  CAS  Google Scholar 

  28. Wijsboom YH, Sheynin Y, Patra A, Zamoshchik N, Vardimon R, Leitus G, Bendikov M (2011) Tuning of electronic properties and rigidity in PEDOT analogs. J Mater Chem 21:1368–1372

    Article  CAS  Google Scholar 

  29. Wang Z, Xu J, Lu B, Zhang S, Qin L, Mo D, Zhen S (2014) Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 30:15581–15589

    Article  CAS  Google Scholar 

  30. Feng Z, Mo D, Zhou W, Zhou Q, Xu J, Lu B, Zhen S, Wang Z, Ma X (2016) Electrosynthesis and electrochemical capacitive behavior of a new nitrogen PEDOT analogue-based polymer electrode. New J Chem 40:2304–2314

    Article  CAS  Google Scholar 

  31. Shakir M, Khan MS, Al-Resayes SI, Khan AA, Baig U (2014) Electrical conductivity, isothermal stability, and ammonia-sensing performance of newly synthesized and characterized organic-inorganic polycarbazole-titanium dioxide nanocomposite. Ind Eng Chem Res 53:8035–8044

    Article  CAS  Google Scholar 

  32. Mangadlao JD, De Leon AC, Felipe MJ, Cao P, Advincula PA, Advincula RC (2015) Grafted carbazole-assisted electrodeposition of graphene oxide. ACS Appl Mater Interfaces 7:10266–10274

    Article  CAS  Google Scholar 

  33. Cowan SR, Schulz P, Giordano AJ, Garcia A, MacLeod BA, Marder SR, Kahn A, Ginley DS, Ratcliff EL, Olson DC (2014) Chemically controlled reversible and irreversible extraction barriers via stable interface modification of zinc oxide electron collection layer in polycarbazole-based organic solar cells. Adv Func Mater 24:4671–4680

    Article  CAS  Google Scholar 

  34. He R, Xu J, Xue Y, Chen D, Ying L, Yang W, Cao Y (2014) Improving the efficiency and spectral stability of white-emitting polycarbazoles by introducing a dibenzothiophene-S,S-dioxide unit into the backbone. J Mater Chem C 2:7881–7890

    Article  CAS  Google Scholar 

  35. Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan CG, Han BH (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134:6084–6087

    Article  CAS  Google Scholar 

  36. Gu C, Bao Y, Huang W, Liu D, Yang R (2016) Four simple structure carbazole-based conjugated microporous polymers with different soft connected chains. Macromol Chem Phys 217:748–756

    Article  CAS  Google Scholar 

  37. Karon K, Lapkowski M (2015) Carbazole electrochemistry: a short review. J Solid State Electrochem 19:2601–2610

    Article  CAS  Google Scholar 

  38. Ates M, Uludag N, Arican F (2014) Synthesis of 9H-carbazole-9-carbothioic methacrylic thioanhydride, electropolymerization, characterization and supercapacitor applications. Polym Bull 71:1557–1573

    Article  CAS  Google Scholar 

  39. Ates M, Eren N (2014) Electrochemical copolymerization of carbazole and 2, 2′: 5′-2′′terthiophene: characterization and micro-capacitor application. Iran Polym J 23:581–589

    Article  CAS  Google Scholar 

  40. Reyna-González JM, Roquero P, Rivera E (2009) A comparative investigation between poly(N-vinyl-carbazole) and poly(3, 6-N-vinyl-carbazole): spectroscopy, conductivity, thermal and optical properties. Des Monom Polym 12:233–245

    Article  Google Scholar 

  41. Ates M, Sarac AS (2009) Capacitive behavior of polycarbazole-and poly(N-vinyl-carbazole)-coated carbon fiber microelectrodes in various solutions. J Appl Electrochem 39:2043–2048

    Article  CAS  Google Scholar 

  42. Park YH, Shin HC, Lee Y, Son Y, Baik DH (1999) Electrochemical preparation of polypyrrole copolymer films from PSPMS precursor. Macromolecules 32:4615–4618

    Article  CAS  Google Scholar 

  43. Deng S, Advincula RC (2002) Polymethacrylate functionalized polypyrrole network films on indium tin oxide: electropolymerization of a precursor polymer and comonomer. Chem Mater 14:4073–4080

    Article  CAS  Google Scholar 

  44. Xu J, Zhou W, Peng H, Pu S, Wang J, Yan L (2006) Electrosyntheses of freestanding and conducting poly[poly(N-vinyl-carbazole)] films in tetrahydrofuran containing additional boron trifluoride diethyl etherate. Polym J 38:369–375

    Article  CAS  Google Scholar 

  45. Wu M, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303

  46. Yang M, Cheng B, Song H, Chen X (2010) Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim Acta 55:7021–7027

    Article  CAS  Google Scholar 

  47. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067

    Article  CAS  Google Scholar 

  48. Jin S, Xue G (1997) Interaction between thiophene and solvated Lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene film. Macromolecules 30:5753–5757

    Article  CAS  Google Scholar 

  49. Ates M, Uludag N (2015) Poly(9H-carbazole-9-carbothioic Dithioperoxyanhydride) formation and capacitor study. International Journal of Polymeric Materials and Polymeric Biomaterials 64:755–761

    Article  CAS  Google Scholar 

  50. Ates M (2014) A novel synthesis of 4-toluene 9H-carbazole-9-carbodithioate, electropolymerization and impedance study. Express Polym Lett 8:480–490

    Article  CAS  Google Scholar 

  51. Ates M, Uludag N, Karazehir T, Arican F (2013) A novel synthesis of (3, 6-bis(2, 3-dihydrothieno[3, 4-b][1, 4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements. J Solid State Electrochem 17:2417–2242

    Article  CAS  Google Scholar 

  52. Ates M, Uludag N (2013) Synthesis of 6-(3, 6-di(thiophene-2-yl)-9H-carbazole-9-yl)-hexanoic acid, alternating copolymer formation, characterization and impedance evaluations. Designed Monomers and Polymers 16(4):398–406

    Article  CAS  Google Scholar 

  53. Ates M, Uludag N, Karazehir T, Arican F (2012) Synthesis of 2-(3, 6-bis(2, 3-dihydrothieno[3, 4-b][1, 4]dioxin-5-yl)-9H-carbazole-9-yl)ethyl methacrylate, electropolymerization, characterization and impedimetric study. J Electrochem Soc 160:G46–G54

    Article  Google Scholar 

  54. Ates M, Uludag N (2012) Circuit model evaluation of poly(methyl pyrrole-co-2-(9H-carbazole-9-yl)ethyl methacrylate) on carbon fiber. Polym-Plast Technol Eng 51:493–499

    Article  CAS  Google Scholar 

  55. Ates M, Karazehir T, Uludag N (2012) Electrolyte effects of poly(3-methylthiophene) via PET/ITO and synthesis of 5-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl) pentanitrile on electrochemical impedance spectroscopy. J Appl Polym Sci 125:3302–3312

    Article  CAS  Google Scholar 

  56. Ates M, Uludag N, Sarac AS (2011) Electrochemical impedance of poly(9-tosyl-9H-carbazole-co-pyrrole) electrocoated carbon fiber. Mater Chem Phys 127:120–127

    Article  CAS  Google Scholar 

  57. Ates M, Uludag N, Arican F, Karazehir T (2015) Synthesis of methyl 4-(9H-carbazole-9-carbanothioylthio) benzoate: electropolymerization and impedimetric study. Turk J Chem 39:194–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51263010, 51463008, 51572117), Ganpo Outstanding Talents 555 projects, the Science and Technology Landing Plan of Universities in Jiangxi province (KJLD14069), the Natural Science Foundation of Jiangxi Province (20161BAB206147), and the Doctoral Starting up Foundation of Jiangxi Science and Technology Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemin Duan or Weiqiang Zhou.

Additional information

Guo Ye and Jingkun Xu contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, G., Xu, J., Ma, X. et al. Enhancing effect of boron trifluoride diethyl etherate electrolytes on capacitance performance of electropolymerized poly[poly(N-vinyl-carbazole)] films. J Solid State Electrochem 21, 81–90 (2017). https://doi.org/10.1007/s10008-016-3335-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3335-z

Keywords

Navigation