Skip to main content
Log in

Facile conductive surface modification of Si nanoparticle with nitrogen-doped carbon layers for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Modified Si nanoparticles were investigated as an anode material for lithium-ion batteries. The Si nanoparticle surfaces were modified with conductive, N-doped carbon layers and prepared by a simple pyrolysis process using an ionic liquid that contained nitrogen. After the heat treatment, the N-doped carbon layers were uniformly coated onto the Si nanoparticles. The smooth carbon layers connected the Si nanoparticles without any morphological changes. Si nanoparticles containing 34 wt.% N-doped carbon exhibited the best electrochemical performance with a capacity of ∼1145 mAh g−1 and excellent capacity retention over 100 cycles. The high electrochemical performance was attributed to the N-doped carbon layers that improved the electrical conductivity and minimized the volume expansion associated with the alloy during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556

    Article  CAS  Google Scholar 

  2. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  3. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithiumion batteries. Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  4. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  5. Bogart TD, Chockla AM, Korgel BA (2013) High capacity lithium ion battery anodes of silicon and germanium. Curr Opin Chem Eng 2:286–293

    Article  Google Scholar 

  6. Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, Zhang D (2016) Preparation and characterization of core–shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries. J Alloys Compd 658:91–97

    Article  CAS  Google Scholar 

  7. Chakrapani V, Rusli F, Filler MA, Kohl PA (2012) Silicon nanowire anode: Improved battery life with capacity-limited cycling. J Power Sources 205:433–438

    Article  CAS  Google Scholar 

  8. Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323

    Article  CAS  Google Scholar 

  9. Zhou XY, Tang JJ, Yang J, Xie J, Ma LL (2013) Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668

    Article  CAS  Google Scholar 

  10. Allcorn E, Kim SO, Manthiram A (2015) Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries. J Power Sources 299:501–508

    Article  CAS  Google Scholar 

  11. Xue DJ, Xin S, Yan Y, Jiang KC, Yin YX, Guo YG, Wan LJ (2012) Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J Am Chem Soc 134:2512–2515

    Article  CAS  Google Scholar 

  12. Jeong G, Kim JG, Park MS, Seo M, Hwang SM, Kim YU, Kim YJ, Kim JH, Dou SX (2014) Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8:2977–2985

    Article  CAS  Google Scholar 

  13. Zhou M, Cai T, Pu F, Chen H, Wang Z, Zhang H, Guan S (2013) Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl Mater Interfaces 5:3449–3455

    Article  CAS  Google Scholar 

  14. Song J, Chen S, Zhou M, Xu T, Lv D, Gordin ML, Long T, Melnyk M, Wang D (2014) Micro-sized siliconcarbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J Mater Chem A 2:1257–1262

    Article  CAS  Google Scholar 

  15. Lee JS, Wang XQ, Luo HM, Baker GA, Dai S (2009) Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc 131:4596–4597

    Article  CAS  Google Scholar 

  16. Ryu MH, Jung KN, Shin KH, Han KS, Yoon S (2013) High performance N–doped mesoporous carbon decorated TiO2 nanofibers as anode materials for lithium-ion batteries. J Phys Chem C 117:8092–8098

    Article  CAS  Google Scholar 

  17. Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 20:87–92

    Article  Google Scholar 

  18. Nanda J, Datta MK, Remillard JT, O’Neill A, Kumta PN (2008) In situ raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode. Electrochem Commun 11:235–237

    Article  Google Scholar 

  19. Park KS, Benayad A, Kang DJ, Doo SG (2008) Nitridation driven conductive Li4 Ti5 O12 for lithium ion batteries. J Am Chem Soc 130:14930–14931

    Article  CAS  Google Scholar 

  20. Zukalova M, Prochazka J, Bastl Z, Duchoslav J, Rubacek L, Havlicek D, Kavan L (2010) Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem Mater 22:4045–4055

    Article  CAS  Google Scholar 

  21. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous Li4 Ti5 O12 coated with N-doped carbon from ionic liquids for Li-ion Batteries. Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region) (No. G02A01210004401) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01051733).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sukeun Yoon or Kuk Young Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasidharachari, K., Na, BK., Woo, SG. et al. Facile conductive surface modification of Si nanoparticle with nitrogen-doped carbon layers for lithium-ion batteries. J Solid State Electrochem 20, 2873–2878 (2016). https://doi.org/10.1007/s10008-016-3291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3291-7

Keywords

Navigation