Skip to main content
Log in

On “resistance overpotential” caused by a potential drop along the ultrathin high aspect ratio gold nanowire electrodes in cyclic voltammetry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High aspect ratio ultrathin (d < 10 nm) gold nanowires deposited on Si/SiO2 substrate are used as working electrodes for measuring cyclic voltammograms (CVs) in aqueous solutions of ferrocenemethanol and potassium hexacyanoferrate. The broadening of the peak separation as compared with that at a solid working electrode is explained as a result of the potential drop (“resistance overpotential”) along nanowires and nanowire network. The change in the CV shape over a sequence of scans is ascribed to a gradual breakup of individual nanowires and the respective transition of the linear diffusion to hemispherical diffusion regularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19:1854–1858

    Article  CAS  Google Scholar 

  2. Kisner A, Heggen M, Fernández E, Lenk S, Mayer D, Simon U, Offenhäusser A, Mourzina Y (2011) The role of oxidative etching in the synthesis of ultrathin single crystalline Au nanowires. Chem–A Europ J 17:9503–9507

    Article  CAS  Google Scholar 

  3. Roy A, Pandey T, Ravishankar N, Singh AK (2013) Single crystalline ultrathin gold nanowires: promising nanoscale interconnects. AIP Adv 3:032131-1–032131-7

    Google Scholar 

  4. Kisner A, Heggen M, Mayer D, Simon U, Offenhäusser A, Mourzina Y (2014) Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors. Nanoscale 6:5146–5155

    Article  CAS  Google Scholar 

  5. Liu J, Fu TM, Cheng Z, Hong G, Zhou T, Jin L, Duvvuri M, Jiang Z, Kruskal P, Xie C, Suo Z, Fang Y, Lieber CM (2015) Syringe-injectable electronics. Nat Nanotechnol 10:629–636. doi:10.1038/nnano.2015.115

    Article  CAS  Google Scholar 

  6. Pud S, Kisner A, Heggen M, Belaineh D, Temirov R, Simon U, Offenhäusser A, Mourzina Y, Vitusevich S (2013) Features of transport in ultrathin gold nanowire structures. Small 9:846–852

    Article  CAS  Google Scholar 

  7. Guerin H, Yoshihira M, Kura H, Ogawa T, Sato T, Maki H (2012) Coulomb blockade phenomenon in ultra-thin gold nanowires. J Appl Phys 111:054304-1–054304-4

    Article  Google Scholar 

  8. Loubat A, Escoffier W, Lacroix LM, Viau G, Tan R, Carrey J, Warot-Fonrose B, Raquet B (2013) Cotunneling transport in ultra-narrow gold nanowire bundles. Nano Res 6:644–651

    Article  CAS  Google Scholar 

  9. Chandni U, Kundu P, Singh AK, Ravishankar N, Ghosh A (2011) Insulating state and breakdown of Fermi liquid description in molecular-scale single-crystalline wires of gold. ACS Nano 5:8398–8403

    Article  CAS  Google Scholar 

  10. Lacroix LM, Arenal R, Viau G (2014) Dynamic HAADF-STEM observation of a single-atom chain as the transient state of gold ultrathin nanowire breakdown. J Am Chem Soc 136:13075–13077

    Article  CAS  Google Scholar 

  11. Roy A, Pandey T, Ravishankar N, Singh AK (2014) Semiconductor-like sensitivity in metallic ultrathin gold nanowire-based sensors. J Phys Chem C 118:18676–18682

    Article  CAS  Google Scholar 

  12. Koposova E, Kisner A, Shumilova G, Ermolenko Y, Offenhäusser A, Mourzina Y (2013) Oleylamine-stabilized gold nanostructures for bioelectronic assembly direct electrochemistry of cytochrome c. J Phys Chem C 117:13944–13951

    Article  CAS  Google Scholar 

  13. Xia BY, Wu HB, Yan Y, Lou XW, Wang X (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485

    Article  CAS  Google Scholar 

  14. Koposova E, Liu X, Kisner A, Ermolenko Y, Shumilova G, Offenhäusser A, Mourzina Y (2014) Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens Bioelectron 57:54–58

    Article  CAS  Google Scholar 

  15. Langley DP, Lagrange M, Giusti G, Jiménez C, Bréchet Y, Nguyen ND, Bellet D (2014) Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6:13535–13543

    Article  CAS  Google Scholar 

  16. Tyagi P, Postetter D, Saragnese DL, Randall CL, Mirski MA, Gracias DH (2009) Patternable nanowire sensors for electrochemical recording of dopamine. Anal Chem 81:9979–9984

    Article  CAS  Google Scholar 

  17. Dickinson T, Sutton PR (1974) The study of adsorption by measurement of electrode resistance. Electrochim Acta 19:427–435

    Article  CAS  Google Scholar 

  18. Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Proc Camb Philos Soc 34:100–108

    Article  CAS  Google Scholar 

  19. Khaligh HH, Goldthorpe IA (2013) Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res Lett 8:235–231

    Article  Google Scholar 

  20. Duan BK, Zhang J, Bohn PW (2012) Conductance-based chemical sensing in metallic nanowires and metal–semiconductor nanostructures. Anal Chem 84:2–8

    Article  CAS  Google Scholar 

  21. Liu Z, Searson PC (2006) Single nanoporous gold nanowire sensor. J Phys Chem B 110:4318–4322

    Article  CAS  Google Scholar 

  22. Hung D, Liu Z, Shah N, Hao Y, Searson PC (2007) Finite size effects in ordered macroporous electrodes fabricated by electrodeposition into colloidal crystal templates. J Phys Chem C 111:3308–3313

    Article  CAS  Google Scholar 

  23. He H, Tao N (2002) Interactions of molecules with metallic quantum wires. Adv Mater 14:161–164

    Article  CAS  Google Scholar 

  24. Li SJ, Du JM, Chen J, Mao NN, Zhang MJ, Pang H (2014) Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. J Solid State Electrochem 18:1049–1056

    Article  CAS  Google Scholar 

  25. Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254

    Article  CAS  Google Scholar 

  26. Wang Q, Zhang Y, Ye W, Wang C (2016) Ni(OH)2/MoSx nanocomposite electrodeposited on a flexible CNT/PI membrane as an electrochemical glucose sensor: the synergistic effect of Ni(OH)2 and MoSx. J Solid State Electrochem 20:133–142

    Article  CAS  Google Scholar 

  27. Scanlon MD, Peljo P, Mendez MA, Smirnov E, Girault HH (2015) Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chem Sci 6:2705–2720

    Article  CAS  Google Scholar 

  28. Nikolaev K, Ermakov S, Ermolenko Y, Averyaskina E, Offenhäusser A, Mourzina Y (2015) A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein’s salt. A bioelectrochemical sensor for glucose determination. Bioelectrochem 105:34–43

    Article  CAS  Google Scholar 

  29. Song JH, Wu Y, Messer B, Kind P, Yang P (2001) Metal nanowire formation using Mo3Se3 as reducing and sacrificing templates. J Am Chem Soc 123:10397–10398

    Article  CAS  Google Scholar 

  30. Bowden FP, Agar JN (1938) General and physical chemistry. 5: irreversible electrode process. Ann Rep Chem Soc 35:90–113

    Google Scholar 

  31. Scholz F (ed) (2002) Electroanalytical methods. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Brown ER, Smith DE, Booman GL (1968) A study of operational amplifier potentiostats employing positive feedback for IR compensation 1. Theoretical analysis of stability and bandpass characteristics. Anal Chem 40:1411–1423

    Article  CAS  Google Scholar 

  33. Feldberg SW (2008) Effect of uncompensated resistance on the cyclic voltammetric response of an electrochemically reversible surface-attached redox couple: uniform current and potential across the electrode surface. J Electroanal Chem 624:45–51

    Article  CAS  Google Scholar 

  34. Fangohr H, Chernyshenko DS, Franchin M, Fischbacher T, Meier G (2011) Joule heating in nanowires. Phys Rev B 84:054437-1–054437-12

    Article  Google Scholar 

  35. Popp E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3:147–169

    Article  Google Scholar 

  36. Cannes C, Kanoufi F, Bard AJ (2003) Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. J Electroanal Chem 547:83–91

    Article  CAS  Google Scholar 

  37. Marecek V, Samec Z, Weber J (1978) The dependence of the electrochemical charge-transfer coefficient on the electrode potential. Study of the Fe(CN)3− 6/Fe(CN)4− 6 redox reaction on polycrystalline Au electrode in KF solutions. J Electroanal Chem 94:169–185

    Article  CAS  Google Scholar 

  38. Bourdillon C, Demaille C, Moiroux J, Saveant JM (1995) Catalysis and mass transport in spatially ordered enzyme assemblies on electrodes. J Am Chem Soc 117:11499–11506

    Article  CAS  Google Scholar 

  39. Swaddle TW (2005) Homogeneous versus heterogeneous self-exchange electron transfer reactions of metal complexes: insights from pressure effects. Chem Rev 105:2573–2608

    Article  CAS  Google Scholar 

  40. Dogonadze RR, Ulstrup J, Kharkats YI (1972) A theory of electrode reactions through bridge transition states; bridges with a discrete electronic spectrum. J Electroanal Chem 39:47–61

    Article  CAS  Google Scholar 

  41. Krulic D, Fatouros N, Khoshtariya DE (1998) Kinetic data for the hexacyanoferrate (II)/(III) couple on platinum electrode in various chlorides of monovalent cations. J Chim Phys 95:497–512

    Article  CAS  Google Scholar 

  42. Scharifker BR (1988) Diffusion to ensembles of microelectrodes. J Electroanal Chem 240:61–76

    Article  CAS  Google Scholar 

  43. Boo H, Jeong RA, Park S, Kim KS, An KH, Lee YH, Han JH, Kim HC, Chung TD (2006) Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Anal Chem 78:617–620

    Article  CAS  Google Scholar 

  44. Li Y, Wu Q, Jiao S, Xu C, Wang L (2013) Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis. Anal Chem 85:4135–4140

    Article  CAS  Google Scholar 

  45. Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53:3558–3586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Hannah Freyer is gratefully acknowledged for improving the English of the paper. Dr. G. Panaitov is gratefully acknowledged for the helpful discussions. Financial support from the Russian Foundation for Basic Research (RFBR) grant 14-03-01079 for studies on the nanostructure synthesis and St. Petersburg State University grant 12.38.218.2015 for the electrochemical studies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Mikhelson or Yu. Mourzina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

K.N. Mikhelson is ISE member.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratova, I.S., Mikhelson, K.N., Ermolenko, Y. et al. On “resistance overpotential” caused by a potential drop along the ultrathin high aspect ratio gold nanowire electrodes in cyclic voltammetry. J Solid State Electrochem 20, 3359–3365 (2016). https://doi.org/10.1007/s10008-016-3280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3280-x

Keywords

Navigation