Skip to main content
Log in

Effect of continuous magnetic field on the growth mechanism of nanoporous anodic alumina films on different substrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effects induced by an external homogeneous magnetic field on the oxide film growth on aluminum in aqueous solutions of oxalic and sulfuric acid and on surface morphology of the alumina films were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on SiO2/Si and glass-ceramic substrates. The pore diameter for oxalic acid alumina films on the SiO2/Si substrate decreased by 0.8 nm, the interpore distance by 5.9 nm, and cell diameter by 6.9 nm if a magnetic field of 0.5 T was applied. When aluminum was anodized in sulfuric acid on the same substrate, the significant changes in parameters of porous structure of alumina, which were similar to the ones in oxalic acid, are firstly observed in stronger magnetic fields (of 0.7 T). On the basis of data obtained in this study and of previous investigation on the negative space charge and thermally activated defects in anodic alumina, we concluded that the intensity of the magnetic field is associated with energy of electron traps and that the changes of cell diameter characterize the trap concentration. The energy of electron traps in oxalic acid alumina films was proved to be smaller than the one in films formed in sulfuric acid, but the concentration of traps was of the same order of magnitude. When the substrate was replaced with the glass-ceramic one, the pore diameter in oxalic acid alumina films increased to ca. 17.6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaraska L, Sulka GD, Jaskuła M (2011) J Solid State Electrochem 15:2427–2436

    Article  CAS  Google Scholar 

  2. Lee W, Park SJ (2014) Chem Rev 114:7487–7556

    Article  CAS  Google Scholar 

  3. Kikuchi T, Nishinaga O, Natsui S, Suzuki RO (2015) Appl Surf Sci 341:19–27

    Article  CAS  Google Scholar 

  4. Vrublevsky I, Jagminas A, Hemeltjen S, Goedel W (2009) J Solid State Electrochem 13:1873–1880

    Article  CAS  Google Scholar 

  5. Ispas A, Bund A, Vrublevsky I (2010) Electrochim Acta 55:4180–4187

    Article  CAS  Google Scholar 

  6. Takezawa M, Imagawa T, Yamasaki J, Yagi M (2007) Sens Lett 5:293–295

    Article  CAS  Google Scholar 

  7. Ispas A, Vrublevsky I, Schmidt U, Bund A (2013) ECS Trans 50:141–146

    Article  Google Scholar 

  8. Lohrengel MM (1993) Mater Sci Eng R11:243–294

    Article  CAS  Google Scholar 

  9. Mozalev A, Mozaleva I, Sakairi M, Takahashi H (2005) Electrochim Acta 50:5065–5075

    Article  CAS  Google Scholar 

  10. Baron-Wiecheć A, Burke MG, Hashimoto T, Liu H, Skeldon P, Thompson GE, Habazaki H, Ganem JJ, Vickridge IC (2013) Electrochim Acta 113:302–312

    Article  Google Scholar 

  11. Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T (1997) Jpn J Appl Phys 36:7791–7795

    Article  CAS  Google Scholar 

  12. Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T (1999) Solid State Electron 43:1143–1146

    Article  CAS  Google Scholar 

  13. Aerts T, Dimogerontakis T, De Graeve I, Fransaer J, Terryn H (2007) Surf Coat Technol 201:7310–7317

  14. Vrublevsky I, Jagminas A, Schreckenbach J, Goedel WA (2007) Electrochim Acta 53:300–304

    Article  CAS  Google Scholar 

  15. Lambert J, Guthmann C, Ortega C, Saint-Jean M (2002) J Appl Phys 91:9161–9170

    Article  CAS  Google Scholar 

  16. Hassel AW, Lohrengel MM (1995) Electrochim Acta 40:433–437

    Article  CAS  Google Scholar 

  17. Akhiezer AI, Berestetskii VB (1965) Quantum electrodynamics. Wiley, New York

    Google Scholar 

  18. Vrublevsky IA, Chernyakova KV, Jagminas AI (2013) J Electrochem Soc 160:C285–C290

    Article  CAS  Google Scholar 

  19. Vrublevsky I, Parkoun V, Sokol V, Schreckenbach J, Marx G (2004) Appl Surf Sci 222:215–225

    Article  CAS  Google Scholar 

  20. Stępniowski WJ, Bojar Z (2011) Surf Coat Technol 206:265–272

    Article  Google Scholar 

  21. Stępniowski WJ, Norek M, Michalska-Domańska M, Bojar Z (2013) Mater Lett 111:20–23

    Article  Google Scholar 

  22. Ono S, Masuko N (2003) Surf Coat Technol 169–170:139–142

    Article  Google Scholar 

Download references

Acknowledgments

This work was undertaken under the cooperative project ТАР LB-12/2015 supported by Lithuanian and Belarusian Science Councils F15LIT-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vrublevsky.

Electronic supplementary material

ESM 1

(RAR 21 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrublevsky, I., Ispas, A., Chernyakova, K. et al. Effect of continuous magnetic field on the growth mechanism of nanoporous anodic alumina films on different substrates. J Solid State Electrochem 20, 2765–2772 (2016). https://doi.org/10.1007/s10008-016-3274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3274-8

Keywords

Navigation