Skip to main content
Log in

Effect of the gradient constant temperature on the electrochemical capacitance of cotton stalk-based activated carbon

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The cost-effective activated carbon based from waste cotton stalks by the KOH activation method is investigated as the electrode material in supercapacitor for the first time. Activation temperature control is one of the most important factors affecting the surface area and pore structure of activated carbon, and it influences the capacitive performance of activated carbon based from cotton stalk. The optimized conditions are as follows: cotton stalk base charcoals and activating agent with a mass ration of 1:4, at an activation temperature of 600, 700, and 800°C for 1, 1, and 2 h, respectively. With these experimental conditions, the activated carbon presents excellent electrochemical characteristics. The specific capacitance of the prepared activated carbon was as high as 180 F g−1at 2 A g−1 in 1.0 mol·L−1 Et4NBF4/AN electrolyte and the specific capacitance without obvious attenuation after 2000 cycles. So, it is reasonable to believe that the activated carbons from cotton stalks by the KOH gradient constant temperature activation method might be one of the innovative carbon electrode materials for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qua QT, Shia Y, Tiana S, Chena YH, Wua YP, Holzeb R (2009) J Power Sources 194:1222–1226

    Article  Google Scholar 

  2. Wu YP, Dai XB, Ma JQ, Cheng YJ (2004) Lithium ion batteries—practice & applications. Chemical Industry Press, Beijing

    Google Scholar 

  3. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF (2006) Carbon 44:216–224

    Article  CAS  Google Scholar 

  4. Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Electrochim Acta 53:2210–2216

    Article  CAS  Google Scholar 

  5. Bentley P, Stone DA, Schofield N (2005) J Power Sources 147:288–294

    Article  CAS  Google Scholar 

  6. Zhang JT, Gong LY, Kang S, Jiang JC, Zhang XG (2012) J Solid State Electrochem 16:2179–2186

    Article  CAS  Google Scholar 

  7. Liang HC, Chen F, Li RG, Wang L, Deng ZH (2004) Electrochim Acta 49:3463–3467

    Article  CAS  Google Scholar 

  8. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  9. Gao B, Hao L, Fu QB, Su LH, Yuan CZ, Zhang XG (2010) Electrochim Acta 55:3681–3686

    Article  CAS  Google Scholar 

  10. Pekala RW (1988) Stone RE. Polymer preprint 29:204–206

    CAS  Google Scholar 

  11. Pekala RW (1989) J Material Science 24:3221–3227

    Article  CAS  Google Scholar 

  12. Du X, Guo P, Song HH, Chen XH (2010) Electrochim Acta 55:4812–4819

    Article  CAS  Google Scholar 

  13. Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  14. Liu YF, Hu ZH, Xu K, Zheng XW, Qiang G (2008) Acta Phys. Chim Sin 24:1143–1148

    Article  CAS  Google Scholar 

  15. Ahmadpour A, Do DD (1997) Carbon 35:1723–1732

    Article  CAS  Google Scholar 

  16. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BJ (2007) J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  17. Wu FC, Tseng RL, Hu CC, Wang CC (2004) J Power Sources 138:351–359

    Article  CAS  Google Scholar 

  18. Wu FC, Tseng RL, Hu CC, Wang CC (2005) J Power Sources 144:302–309

    Article  CAS  Google Scholar 

  19. Balathanigaimani MS, Wang GS, Lee MJ, Chan K, Lee JW, Hee M (2008) Electrochem Commun 8:868–871

    Article  Google Scholar 

  20. Wang XF, Tian Y (2010) Int Mater Rev 24:21–27

    Google Scholar 

  21. Guo YP, Qi JR, Jiang YQ, Yang SF, Wang ZC, Xu HD (2003) Mater Chem Phys 80:704–709

    Article  CAS  Google Scholar 

  22. Li X, Xing W, Zhuo SJ, Qiao SZ, Lu GQ (2011) Bioresour Technol 102:1118–1123

    Article  CAS  Google Scholar 

  23. Olivares-Marína M, Fernández JA, Lázaro MJ, Fernández-González C, Macías-García A, Gómez-Serrano V, Stoeckli F, Centenob TA (2009) Mater Chem Phys 114:323–327

    Article  Google Scholar 

  24. Ma YW, Xiong CY, Huang W, Zhao J, Li XA, Fan QL, Huang W (2012) Chinese J Inorg Chem 28:546–550

    CAS  Google Scholar 

  25. Akdeniz RC, Acaroglu M, Arif H (2004) Energ Source 26:65–75

    Article  CAS  Google Scholar 

  26. Deng H, Zhang GL, Xu XL, Tao GH, Dai JL (2010) J Hazardous Materials 182:217–224

    Article  CAS  Google Scholar 

  27. Ahmadpour A, Do DD (1996) Carbon 34:471–479

    Article  CAS  Google Scholar 

  28. Armandi MB, Bonelli F (2010) Geobaldo, Garrone E. Micropor Mesopor Mater 132:414–420

    Article  CAS  Google Scholar 

  29. Deng H, Li G, Yang H, Tang J (2010) Chem Eng J 163:373–381

    Article  CAS  Google Scholar 

  30. Ioannidou O, Zabaniotou A (2007) Renewable and Sustainable Energy Reviews11:1966–2005

  31. Akdeniz RC, Acaroglu M, Arif H (2004) Energ Source 26:65–75

    Article  CAS  Google Scholar 

  32. Prahas D, Kartika Y, Indraswatin N (2008) Chem Eng J 140:32–42

    Article  CAS  Google Scholar 

  33. Stoeckli HF (1990) Carbon 28:1–6

    Article  CAS  Google Scholar 

  34. Andrian EI, Steven W (2010) Bioresour Technol 101:3534–3540

    Article  Google Scholar 

  35. Choy KKH, Barford JP, McKay G (2005) Chin J Chem Eng 109:147–165

    CAS  Google Scholar 

  36. Ganan J, González-Garcia CM, Gonzáleza JF, Sabioa E, Macias-Garciab A, Diaz-Diez MA (2004) Appl Surf Sci 238:347–354

    Article  CAS  Google Scholar 

  37. Daud WMAW, Ali WSW (2004) Bioresour Technol 93:63–69

    Article  CAS  Google Scholar 

  38. Marsh H, Rodriguez-Reinoso F (2006 ) Activated carbon (Elsevier), pp 322–365

  39. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amoros D, Linares-Solano A (2004) Carbon 42:1371–1375

    Article  Google Scholar 

  40. Li W, Zhang LB, Peng JH, Li N, Zhu XY (2008) Ind Crop Prod 27:341–347

    Article  Google Scholar 

  41. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Hoboken, NJ, pp. 478–479

    Book  Google Scholar 

  42. Zhou J, Xing W, Zhuo SP, Zhao Y (2011) Solid State Sci 13:2000–2006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from Advanced Carbon Materials Research Laboratory, College of Materials Science and Engineering, Beijing University of Chemical Technology.

This work was supported by the Xinjiang science and technology aid project in Xinjiang (No.2013911049), Industrial Science and technology project of Shaanxi Province (NO.2016GY-170), the “West Light” Talents Cultivation Program of the Chinese Academy of Sciences (No.XBBS200919), and the Foundation of State Key Laboratory of Chemical Resource Engineering (BUCT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Li, Tuerdi Wumaier or Mingde Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wumaier, T., Chen, M. et al. Effect of the gradient constant temperature on the electrochemical capacitance of cotton stalk-based activated carbon. J Solid State Electrochem 20, 2315–2321 (2016). https://doi.org/10.1007/s10008-016-3235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3235-2

Keywords

Navigation