Skip to main content
Log in

Redox chemistry of coenzyme Q—a short overview of the voltammetric features

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Quinones constitute a big family of organic redox active compounds that are overwhelmingly involved in important physiological processes. The most important members in the class of quinones are, indeed, the plastoquinones and the coenzyme Q (CoQ) derivatives. Voltammetry of coenzyme Q family members attracts significant attention since 50 years ago. In this work, we refer to some of the most important voltammetric features of coenzyme Qs studied in aprotic and in aqueous media. While the redox chemistry of coenzyme Q members in non-aqueous aprotic organic solvents can be described by two consecutive one-electron transfer steps, more complex situation exists in the voltammetry of coenzyme Qs performed in aqueous media. Although it has been claimed for a while that the voltammetric processes of coenzyme Qs in aqueous solutions proceed via formation of semiquinone radical intermediate species, it has been recently proven that this can be not completely true. Intensive voltammetric and spectroscopic studies of coenzyme Q systems in buffered and non-buffered aqueous media revealed that hydrogen bonding between electrochemically created CoQ species and the water molecules plays an important role in stabilizing electrochemically generated species of these systems. We also pay attention to the amazing redox chemistry of coenzyme Qs in strong alkaline media, while we refer to the chemical features of novel coenzyme Q derivatives obtained under such conditions. Hints are presented about the antioxidant capacity of some of the novel hydroxylated coenzyme Q systems. Also, the possibility of these systems to bind and transfer earth-alkaline cations across biomimetic membranes is shortly elaborated. In the end, we refer to some relevant theoretical works that describe closely the voltammetric behavior of various coenzyme Q systems. We believe that this short review will contribute towards better understanding of the amazing chemistry of coenzyme Q derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crane FL (1965) In Biochemistry of quinones (Morton RA, Ed.) 183–206, Academic Press New York.

  2. Chambers JO (1974) Electrochemistry of quinones in: The chemistry of Quinoid Compounds, Part 1 (Patai S. Ed.) 737–792, John Wiley & Sons, London.

  3. Trumpower BL (1982) Functions of quinones in energy conserving systems. Academic Press, New York

    Google Scholar 

  4. Molyneux SL, Young JM, Florkowski CM, Lever M, George PM (2007) Coenzyme Q10: is there a clinical role and a case for measurement? Clin Biochem Rev 29:71–81

    Google Scholar 

  5. Sarewicz M, Osyczka A (2015) Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transfer chain signalling. Physiol Rev 95:219–243

    Article  Google Scholar 

  6. Ebadi M, Marwah J, Chopra R (Eds) (2001) Mitochondrial ubiquinone (Coenzyme Q10) biochemical, functional, medical and therapeutic aspects in human health and diseases, vol 1 and 2, Prominent Press, Scottsdale, Arizona

  7. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q10 is an obligatory co-factor for uncoupling protein function. Nature 408:609–613

    Article  CAS  Google Scholar 

  8. Finkel T (1998) Oxygen radicals and signalling. Cell Biol 10:248–253

    CAS  Google Scholar 

  9. Cauquis G, Marbach G (1971) Biological aspects of electrochemistry (Milazzo G, Jones PE, Rampazzo L, Eds), Springer

  10. Sasaki K, Kashimura T, Ohura M, Ohsaki Y, Ohta N (1990) Solvent effect in the electrochemical reduction of p-quinones in several aprotic solvents. J Electrochem Soc 137:2437–2443

    Article  CAS  Google Scholar 

  11. Morton RA (1965) Biochemistry of quinones. Academic Press, New York

    Google Scholar 

  12. Chambers JQ (1988) Electrochemistry of quinones, in The Chemistry of Quinonoid Compounds, S. Patai and Z. Rappoport, Eds. 2:719–757, Wiley, New York, NY, USA, 1988

  13. Laviron E (1986) Electrochemical reactions with protonations at equilibrium. Part XIII. Experimental study of the homogeneous electron exchange in quinone/dihydroquinone systems. J Electroanal Chem 208:357–372

    Article  CAS  Google Scholar 

  14. Russel C, Jaenicke J (1986) Heterogeneous electron exchange of quinones in aprotic solvents. Part III. The second reduction step of p-benzoquinone and its dependence on the supporting electrolyte. J Electroanal Chem 199:139–151

    Article  Google Scholar 

  15. Michalkiewicz S (2007) Cathodic reduction of coenzyme Q10 on glassy carbon electrode in acetic acid–acetonitrile solutions. Bioelectrochem 70:495–500

    Article  CAS  Google Scholar 

  16. Michalkiewicz S (2011) Anodic oxidation of oxidized forms of coenzyme Q10 AND Q0 on carbon electrodes in acetic acid solutions. Bioelectrochem 82:103–111

    Article  CAS  Google Scholar 

  17. Petrucci R, Giorgini E, Damiani E, Carloni P, Marrosu G, Trazza A, Paolo G (2000) A study of the interactions between coenzyme Q0 and superoxide anion. Could ubiquinones mimic superoxide dismutase (SOD)? Res Chem Intermed 26:269–282

    Article  CAS  Google Scholar 

  18. Cauquis G, Marbach G (1971). The redox behaviour of biological quinines and its relation with the mitochondrial respiratory chain. Biological aspects of electrochemistry (Milazzo G et al., Eds) 18:205–214

  19. Biondi C, Galeazzi R, Littarru G, Greci L (2002) Reduction of 1,4-quinone and ubiquinones by hydrogen atom transfer and UVA radiation. Free Radic Res 36:399–404

    Article  CAS  Google Scholar 

  20. Mukai K (2001). Free radical chemistry of coenzyme Q In Coenzyme Q: molecular mechanisms in health and disease, Kagan VE, Quinn PJ (Eds) CRC Press London New York

  21. Itoh S, Kawakami H, Fukuzumi S (1998) Electrochemical behavior and characterization of semiquinone radical anion species of coenzyme PQQ in aprotic organic media. J Am Chem Soc 120:7271–7277

    Article  CAS  Google Scholar 

  22. Turkowicz MJ, Karpinska J (2013) Analytical problems with the determination of coenzyme Q10 in biological samples. BioFactors 39:176–185

    Article  CAS  Google Scholar 

  23. Petrova EV, Korotkova EI, Kratochvil B, Vornova OA, Dorozhko EV, Bulycheva EV (2014) Investigation of Coenzyme Q10 by voltammetry. Procedia Chem 10:173–178

    Article  CAS  Google Scholar 

  24. Lemmer C, Bouvet M, Meunier-Prest R (2011) Proton coupled electron transfer of ubiquinone Q2 incorporated in a self-assembled monolayer. Phys Chem Chem Phys 13:13327–13332

    Article  CAS  Google Scholar 

  25. Marchal D, Boireau W, Laval JM, Moiroux J, Bourdillon C (1997) An electrochemical approach of the redox behavior of water insoluble ubiquinones or plastoquinones incorporated in supported phospholipid layers. Biophys J 72:2679–2687

    Article  CAS  Google Scholar 

  26. Weiss SA, Jeuken LJC (2009) Lipid-membrane modified electrodes to study quinine oxidoreductases. Biochem Soc Trans 37:1–11. doi:10.1042/BST0370707

    Article  Google Scholar 

  27. Contin M, Flor S, Martinefski M, Lucangioli S, Tripodi V (2014) New analytical strategies applied in the determination of Coenzyme Q10 in biological matrix in advanced protocols in oxidative stress III. Methods Mol Biol 1208:409–420, Springer Science and Business Media, New York

    Article  Google Scholar 

  28. Ru J, Du J, Qin D-D, Huang B-M, Xue Z-H, Zhou X-B, Lu X-Q (2013) An electrochemical glutathione sensor: ubiquinone as a transducer. Talanta 11:15–20

    Article  Google Scholar 

  29. Martensson C, Agmo Hernandez V (2012) Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochem 88:171–180

    Article  CAS  Google Scholar 

  30. Saleh Ahammad AJ, Lee J-J, Aminur Rahman MD (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289–2319

    Article  CAS  Google Scholar 

  31. Emons H, Wittstock G, Voigt B, Seidel H (1992) Voltammetry trace determination of ubiquinones at mercury electrodes. Fresenius J Anal Chem 342:737–739

    Article  CAS  Google Scholar 

  32. Gordillo GJ, Schiffrin DJ (1994) Redox properties of Ubiquinon (UQ10) adsorbed on a mercury electrode. J Hem Soc Faraday Trans 90:1913–1922

    Article  CAS  Google Scholar 

  33. Dryhurst D, Kadish KM, Scheller F, Renneberg R (1982) Biological electrochemistry. Academic Press, Paris, Tokyo

    Google Scholar 

  34. Meisel D, Fessenden RW (1976) Electron exchange and electron transfer of semiquinones in aqueous solutions. J Am Chem Soc 98:7505–7510

    Article  CAS  Google Scholar 

  35. Kahlert H (2008) Functionalized carbon electrodes for pH determination. J Solid State Electrochem 12:1255–1266

    Article  CAS  Google Scholar 

  36. Shi K, Shiu K-K (2004) Adsorption of some quinone derivatives at electrochemically activated glassy carbon electrodes. J Electroanal Chem 574:63–70

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (200) Electrochemical Methods, John Wiley & Sons, 2nd edition

  38. Shim YB, Park SM (1997) Spectroelectrochemical studies of p-benzoquinone reduction in aqueous media. J Electroanal Chem 425:201–207

    Article  CAS  Google Scholar 

  39. Gómez M, González FJ, González I (2003) A model for characterization of successive hydrogen bonding interactions with electrochemically generated charged species. The quinone electroreduction in the presence of donor protons. Electroanal 15:635–645

    Article  Google Scholar 

  40. Eggins BR, Chambers JQ (1970) Proton effects in the electrochemistry of the quinone hydroquinone system in aprotic solvents. J Electrochem Soc 117:186–192

    Article  CAS  Google Scholar 

  41. Quan M, Sanchez D, Wasylkiw MF, Smith DK (2007) Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J Am Chem Soc 129:12847–12856

    Article  CAS  Google Scholar 

  42. Bogeski I, Gulaboski R, Kappl R, Mirceski V, Stefova M, Petreska J, Hoth M (2011) Calcium binding and transport by Coenzyme Q. J Am Chem Soc 133:9293–9303

    Article  CAS  Google Scholar 

  43. Gulaboski R, Bogeski I, Mirceski V, Saul S, Pasieka B, Haeri HH, Stefova M, Petreska Stanoeva J, Mitrev S, Hoth M, Kappl R (2013) Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci Reports 3:1–8. doi:10.1038/srep01865

    Google Scholar 

  44. Katsumi J, Nakayama T, Esaka Y, Uno B (2012) mechanistic study of the electrochemical reduction of 9,10-anthraquinone in presence of hydrogen-bond and proton donating additives. Anal Sci 28:257–265

    Article  CAS  Google Scholar 

  45. Mirceski V, Gulaboski R, Bogeski I, Hoth M (2007) Redox chemistry of Ca-transporter 2-palmitoylhydroquinone in an artificial thin organic film membrane. J Phys Chem C 111:6068–6076

    Article  CAS  Google Scholar 

  46. Valerian EK, Quinn PJ (2001) Coenzyme Q: molecular mechanism in health and disease. CRC Press, New York

    Google Scholar 

  47. Hohl H (1986) Quinones in biology: functions in electron transfer and oxygen activation. Adv Free Radical Biol Med 2:211–279

    Article  Google Scholar 

  48. Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of Coenzyme Q10: recent developments. Mol Biotechnol 37:31–37

    Article  CAS  Google Scholar 

  49. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. New York, Oxford

    Google Scholar 

  50. Crane FL (2007) Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 7S:S2–S7

    Article  Google Scholar 

  51. Acton A (2013). Enzymes and coenzymes-advances in research and application. ScholaryEditions Atlanta Gerogia

  52. Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2:447–459

    Article  CAS  Google Scholar 

  53. Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K (2002) Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. Febs Lett 512:33–37

    Article  CAS  Google Scholar 

  54. Gulaboski R, Mirceski V (2015) New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry. Electrochim Acta 167:219–225

    Article  CAS  Google Scholar 

  55. Gulaboski R, Kokoskarova P, Mitrev S (2012) Theoretical aspects of several successive two-step redox mechanisms in protein-film cyclic staircase voltammetry. Electrochim Acta 69:86–96

    Article  CAS  Google Scholar 

  56. Gulaboski R, Mihajlov L (2011) Catalytic mechanism in successive two-step protein-film voltammetry—theoretical study in square-wave voltammetry. Biophys Chem 155:1–9

    Article  CAS  Google Scholar 

  57. Gulaboski R, Mirceski V, Lovric M, Bogeski I (2005) Theoretical study of a surface electrode reaction preceded by a homogeneous chemical reaction under conditions of square-wave voltammetry. Electrochem Commun 7:515–522

    Article  CAS  Google Scholar 

  58. Gulaboski R (2009) Surface ECE mechanism in protein film voltammetry—a theoretical study under conditions of square-wave voltammetry. J Solid State Electrochem 13:1015–1024

    Article  CAS  Google Scholar 

  59. Mirceski V, Komorsky-Lovric S, Lovric M (2007). Square-wave voltammetry: theory and application: In Scholz F (ed) Monographs in Electrochemistry, Springer, Berlin

  60. Mirceski V, Gulaboski R (2002) A theoretical and experimental study of a two-step quasireversible surface redox reaction by square-wave voltammetry. Croat Chem Acta 76:37–48

    Google Scholar 

  61. Mirceski V, Guziejewski D, Gulaboski R (2015) Electrode kinetics from a single square-wave voltammogram. Maced J Chem Chem Eng 34:36–42

    Article  Google Scholar 

  62. Lovric M (1988) The theory of EE mechanism with adsorption of the intermediate. J Electroanal Chem 153:1–27

    Article  Google Scholar 

  63. Lovric M, Jadresko D, Komorsky-Lovric S (2013) Theory of square-wave voltammetry of electrode reaction followed by the dimerization of the product. Electrochim Acta 90:226–331

    Article  CAS  Google Scholar 

  64. Komorsky-Lovric S, Lovric M (2012) Theory of square-wave voltammetry of two electron reduction with the intermediate that is stabilized by complexation. Electrochim Acta 69:60–64

    Article  CAS  Google Scholar 

  65. Lovric M (2010) Square-wave voltammetry in: Electroanalytical methods (Scholz F, Ed.) Springer, Berlin, 121–145

  66. Komorsky-Lovric S, Lovric M (2012) Simulation of square-wave voltammograms of three-electron redox reaction. Electrochim Acta 56:7189–7193

    Article  Google Scholar 

  67. Komorsky-Lovric S, Lovric M (1980) Simple EEE mechanism at DME. J Electroanal Chem Interfacial Electrochem 112:169–174

    Article  Google Scholar 

  68. Komorsky-Lovric S, Lovric M (2014) Square-wave voltammetry of two step electrode reaction. Int J Electrochem Sci 9:435–444

    Google Scholar 

  69. Lovric M, Komorsky-Lovric S (2012) Theory of square-wave voltammetry of kinetically controlled two-step electrode reactions. Croat Chem Acta 85:569–575

    Article  CAS  Google Scholar 

  70. Komorsky-Lovric S, Lovric M (2013) Theory of square-wave voltammetry of two electrode reactions coupled by reversible chemical reaction. Anal Bioanal Electrochem 5:291–304

    Google Scholar 

  71. Lovric M, Komorsky-Lovric S (2011) Theory of square-wave voltammetry of two-step electrode reaction using an inverse scan direction. Int J Electrochem vol. 2011. http://dx.doi.org/10.4061/2011/538341

  72. Serna C, Molina A, Moreno MM, Lopez-Tenez M (2005) Study of multistep electrode processes in double potential step techniques at spherical electrodes. J Electroanal Chem 546:97–108

    Article  Google Scholar 

  73. Lopez-Tenes M, Moreno MM, Serna C, Molina A (2002) Study of an EE mechanism using double potential step techniques. J Electroanal Chem 528:159–169

    Article  CAS  Google Scholar 

  74. Serna C, Lopez-Tenez M, Gonzalez J, Molina A (2001) Reversible multistep electrode processes. Consideration of the bulk presence of intermediate species and of the values of the diffusion coefficients in voltammetry. Electrochim Acta 46:2699–2709

    Article  CAS  Google Scholar 

  75. Laborda E, Martinez-Ortiz F, Molina A (2010) Study of electrochemical processes with coupled homogeneous chemical reaction in differential pulse voltammetry at spherical electrodes and microhemispheres. Electroanal 22:1857–1866

    Article  CAS  Google Scholar 

  76. Lopez-Tenez M, Gonzalez J, Molina A (2015) Two-electron transfer reactions in electrochemistry for solution-soluble and surface-confined molecules: a common approach. J Phys Chem C 118:12312–12324

    Article  Google Scholar 

  77. Gulaboski R, Mirceski V, Bogeski I, Hoth M (2011) Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16:2315–2328

    Article  Google Scholar 

  78. Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M (2013) Square-wave voltammetry: a review on recent progress. Electroanal 25:2411–2422

    Article  CAS  Google Scholar 

  79. Mirceski V, Gulaboski R (2014) Recent achievements in square-wave voltammetry (a review). Maced J Chem Chem En 33:1–12

    CAS  Google Scholar 

  80. Laborda E, Gonzalez J, Molina A (2014) Recent advances on the theory of pulse techniques. A mini review. Electrochem Commun 43:25–30

    Article  CAS  Google Scholar 

  81. Batchelor-McAuley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A (2015) Recent advances in voltammetry. ChemistryOpen 4:224–260

    Article  CAS  Google Scholar 

  82. Lenaz G (1985) Coenzyme Q: Biochemistry, bioenergetics and clinical application of ubiquinone, Jihn Willey&Sons

  83. Guin PS, Das S, Mandal PC (2011) Electrochemical reduction of quinones in different media. A review. Int J Electrochem vol. 2011. doi:10.4061/2011/816202

  84. James AM, Smith RAJ, Murphy MP (2004) Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys 423:47–56

    Article  CAS  Google Scholar 

  85. Scholz F, Schroeder U, Gulaboski R. Domenech Carbo A (2015) Electrochemistry of immobilized particles and droplets, Experiments with three phase electrodes, 2nd Edition. Springer, Berlin

  86. Sabuzi F, Armuzza V, Conte V, Floris B, Venanzi M, Galloni P, Gatto E (2016) KuQuinones: a new class of quinoid compounds as photoactive species on ITO. J Mat Chem C 4:622–629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rubin Gulaboski thanks the Goce Delcev University in Stip, Macedonia, for the financial support via the project: Metal-complexing and antioxidative properties of some new derivatives of Coenzyme Q-0 (2013–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Gulaboski.

Additional information

Dedicated to the 65th birthday of our great friends and collaborators Dr. Milivoj Lovric and Dr. Sebojka Komorsky Lovric

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulaboski, R., Markovski, V. & Jihe, Z. Redox chemistry of coenzyme Q—a short overview of the voltammetric features. J Solid State Electrochem 20, 3229–3238 (2016). https://doi.org/10.1007/s10008-016-3230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3230-7

Keywords

Navigation