Skip to main content

Advertisement

Log in

Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium–sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li–S battery is an attractive electrochemical energy storage system because of its high energy density. However, its commercialization has been greatly affected by the poor cycle life and low rate performance, which is attributed to the dissolution of polysulfides and their shuttle effects. In this study, titanium dioxide particles with a large amount of exposed {001} facets (TDPEF) were prepared by alcohol-thermal method. The as-prepared TDPEF achieved a relatively high specific surface area of 92 m2 g−1 and a pore volume of 0.27 cm g−1. Sulfur was mixed with the TDPEF to form TDPEF/S composite by a melt diffusion process. The TDPEF/S composite exhibits much excellent discharge capacity retention of 80 % after 100 cycles compared with pure sulfur at a high current rate of 0.5 C, and it still has a discharge capacity as high as 530 mAh g−1 even at the current rate of 4 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  Google Scholar 

  2. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Edit 52:13186–13200

    Article  CAS  Google Scholar 

  3. Chen R, Zhao T, Wu F (2015) From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chem Commun 51(1):18–33

    Article  CAS  Google Scholar 

  4. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous Pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23(8):1064–1069

    Article  CAS  Google Scholar 

  5. Ding B, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim Acta 107:78–84

    Article  CAS  Google Scholar 

  6. Yuan LX, Feng J, Ai XP, Cao YL, Chen SL, Yang HX (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614

    Article  CAS  Google Scholar 

  7. Ma XZ, Jin B, Wang HY, HouJZ ZXB, Wang HH, Xin PM (2015) S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem 736:127–131

    Article  CAS  Google Scholar 

  8. Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408

    Article  CAS  Google Scholar 

  9. Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim Acta 176:442–447

    Article  CAS  Google Scholar 

  10. Tang H, Yao S, Jing M, Wu X, Hou J, Qian X, Xiao K (2015) Mg0.6Ni0.4 O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries. J Alloy Compd 650:351–356

    Article  CAS  Google Scholar 

  11. Wu HB, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem-Eur J 19(33):10804–10808

    Article  CAS  Google Scholar 

  12. Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard MH, Zhang JG, Liu J, Xiao J (2014) Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14(5):2345–2352

    Article  CAS  Google Scholar 

  13. Bao W, Zhang Z, Zhou C, Lai Y, Li J (2014) Multi-walled carbon nanotubes@ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes@ metal–organic framework for lithium sulfur battery. J Power Sources 248:570–576

    Article  CAS  Google Scholar 

  14. Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries. J Power Sources 302:174–179

    Article  CAS  Google Scholar 

  15. Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal–organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl Mater Inter 7(37):20999–21004

    Article  CAS  Google Scholar 

  16. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525

    Article  CAS  Google Scholar 

  17. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294

    Article  CAS  Google Scholar 

  18. He Y, Fu Z, Zhou Q, Zhong M, Yuan L, Wei J, Zeng Y (2015) Fabrication and electrochemical behavior of a lithium-sulfur cell with a TiO2-sulfur-carbon aerogel-based cathode. Ionics 21(11):3065–3073

    Article  CAS  Google Scholar 

  19. Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2:325

    Article  Google Scholar 

  20. Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Gu HB (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta 2007(T129):62

    Article  Google Scholar 

  21. Wang J, Yang J, Xie J, Xu NAIXIN (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965

    Article  CAS  Google Scholar 

  22. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181

    Article  CAS  Google Scholar 

  23. Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Lee JY (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795

    Article  CAS  Google Scholar 

  24. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  25. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80(12):3157–3171

    Article  CAS  Google Scholar 

  26. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  27. Zhang Z, Li Q, Zhang K, Chen W, Lai Y, Li J (2015) Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for Superior lithium–sulfur batteries. J Power Sources 290:159–167

    Article  CAS  Google Scholar 

  28. Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Cui Y (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331

    Article  Google Scholar 

  29. Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132(17):6124–6130

    Article  CAS  Google Scholar 

  30. Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109(42):19560–19562

    Article  CAS  Google Scholar 

  31. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152–3153

    Article  CAS  Google Scholar 

  32. Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348

    Article  CAS  Google Scholar 

  33. Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17(11):2959–2965

    Article  CAS  Google Scholar 

  34. Ding SJ, Chen JS, Wang ZY, Cheah YL, Madhavi S, Hu X, Lou XW (2011) TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. J Mater Chem 21(6):1677–1680

    Article  CAS  Google Scholar 

  35. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 Nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722

    Article  CAS  Google Scholar 

  36. Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Zeng R (2012) Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J Mater Chem 22(12):5848–5854

    Article  CAS  Google Scholar 

  37. Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418(6896):397–399

    Article  CAS  Google Scholar 

  38. Lunell S, Stashans A, Ojamäe L, Lindström H, Hagfeldt A (1997) Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J Am Chem Soc 119(31):7374–7380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Start-up Fund of Jiangsu University (Grant Nos. 14JDG060 and 14JDG058), the Postdoctoral Fund of Jiangsu Province (Grant No. 1402196C), open fund of the Laboratory of Solid State Microstructures, Nanjing University (M28035), the National Natural Science Foundation of China (Grant Nos. 21401081, 51274106, 51474113, and 51474037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinye Qian or Xiangqian Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Qian, X., Jin, L. et al. Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium–sulfur batteries. J Solid State Electrochem 20, 2161–2168 (2016). https://doi.org/10.1007/s10008-016-3224-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3224-5

Keywords

Navigation