Skip to main content
Log in

A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we prepared the porphyrin/reduced graphene oxide (porphyrin/RGO) nanocomposite which combined the excellent electrical conductivity and high specific surface area of RGO and the catalytic effect on the oxidation of guanine and adenine of porphyrin for simultaneous detection of guanine and adenine. Since the nanocomposite had remarkable synergistic effect between porphyrin and RGO, the modified glassy carbon electrode (GCE) exhibited excellent electrochemical catalytic activities and high sensitivity toward the detection of guanine and adenine. The nanocomposite was successfully applied to simultaneous quantitative detection of guanine and adenine with a linear range covering 0.05–150 and 0.2–100 μM, respectively, and the detection limits (LOD) (S/N = 3) were estimated to be 0.016 μM for guanine and 0.06 μM for adenine. The porphyrin/RGO/GCE was applied for simultaneous detection of trace amounts of guanine and adenine in hydrochloric calf thymus DNA. Moreover, the porphyrin/RGO/GCE was simply fabricated and displayed good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei Y, Huang QA, Li MG, Huang XJ, Fang B, Wang L (2011) Electrochim Acta 56(24):8571–8575

    Article  CAS  Google Scholar 

  2. Liang X, Zhang X, Wang F, Xu M, Bao X (2014) J Solid State Electrochem 18(12):3453–3461

    Article  CAS  Google Scholar 

  3. Gao YS, Xu JK, Lu LM, Wu LP, Zhang KX, Nie T, Zhu XF, Wu Y (2014) Biosens Bioelectron 62:261–267

    Article  CAS  Google Scholar 

  4. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, Liu YM (2013) Talanta 114:43–48

    Article  CAS  Google Scholar 

  5. Li H, Wang X, Yu Z (2013) J Solid State Electrochem 18(1):105–113

    Article  Google Scholar 

  6. Thangaraj R, Senthil Kumar A (2012) J Solid State Electrochem 17(3):583–590

    Article  Google Scholar 

  7. Chen SM, Wang CH (2007) J Solid State Electrochem 11(5):581–591

    Article  CAS  Google Scholar 

  8. Zhang R, Jin G, Hu X (2009) J Solid State Electrochem 13(10):1545–1552

    Article  CAS  Google Scholar 

  9. Van Staden JF, Georgescu R, Stefan-van Staden RI, Calinescu I (2013) J Electrochem Soc 161(2):B3014–B3022

    Article  Google Scholar 

  10. Li J, Lei J, Wang Q, Wang P, Ju H (2012) Electrochim Acta 83:73–77

    Article  CAS  Google Scholar 

  11. Kadish KM, Van Caemelbecke E (2003) J Solid State Electrochem 7(5):254–258

    Article  CAS  Google Scholar 

  12. Zhang Y, Lu X, Liao T, Cheng Y, Liu X, Zhang L (2007) J Solid State Electrochem 11(9):1303–1312

    Article  CAS  Google Scholar 

  13. Hamer M, Carballo RR, Rezzano IN (2009) Electroanalysis 21(19):2133–2138

    Article  CAS  Google Scholar 

  14. Jiang L, Cui L, He X (2015) J Solid State Electrochem 19(2):497–506

    Article  CAS  Google Scholar 

  15. Liu FM, Du YQ, Cheng YM, Yin W, Hou CJ, Huo DQ, Chen C, Fa HB (2015) J Solid State Electrochem 20(3):599–607

    Article  Google Scholar 

  16. Lu X, Zhao D, Song Z, Wu B, Lu B, Zhou X, Xue Z (2011) Biosens Bioelectron 27(1):172–177

    Article  CAS  Google Scholar 

  17. Liu Z, Long T, Wu S, Li C (2015) Analyst 140(16):5495–5500

    Article  CAS  Google Scholar 

  18. Zhao HZ, Chang YY, Liu C (2013) J Solid State Electrochem 17(6):1657–1664

    Article  CAS  Google Scholar 

  19. Yang T, Kong Q, Li Q, Wang X, Chen L, Jiao K (2014) ACS Appl Mater Interfaces 6(14):11032–11037

    Article  CAS  Google Scholar 

  20. Lv M, Mei T, Zhang C, Wang X (2014) RSC Adv 4(18):9261

    Article  CAS  Google Scholar 

  21. Guo CX, Lei Y, Li CM (2011) Electroanalysis 23(4):885–893

    Article  CAS  Google Scholar 

  22. Wu L, Feng L, Ren J, Qu X (2012) Biosens Bioelectron 34(1):57–62

    Article  Google Scholar 

  23. Kemmegne-Mbouguen JC, Angnes L (2015) Sensors Actuators B Chem 212:464–471

    Article  CAS  Google Scholar 

  24. Han HS, Lee HK, You JM, Jeong H, Jeon S (2014) Sensors Actuators B Chem 190:886–895

    Article  CAS  Google Scholar 

  25. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  26. Lv M, Wang X, Li J, Yang X, Zhang C, Yang J, Hu H (2013) Electrochim Acta 108:412–420

    Article  CAS  Google Scholar 

  27. Chen Y, Li J, Mei T, Hu X, Liu D, Wang J, Hao M, Li J, Wang J, Wang X (2014) J Mater Chem A 2(48):20714–20722

    Article  CAS  Google Scholar 

  28. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Colloids Surf B 82(2):543–549

    Article  CAS  Google Scholar 

  29. Wang HB, Zhang HD, Xu LL, Gan T, Huang KJ, Liu YM (2014) J Solid State Electrochem 18(9):2435–2442

    Article  CAS  Google Scholar 

  30. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  31. Kim SK, Kim D, Jeon S (2012) Sensors Actuators B Chem 174:285–291

    Article  CAS  Google Scholar 

  32. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J (2012) Electrochim Acta 80:346–353

    Article  CAS  Google Scholar 

  33. Liu X, Zhang L, Wei S, Chen S, Ou X, Lu Q (2014) Biosens Bioelectron 57:232–238

    Article  CAS  Google Scholar 

  34. Chen Y, Yang J, Yang Y, Peng Z, Li J, Mei T, Wang J, Hao M, Chen Y, Xiong W, Zhang L, Wang X (2015) Chem Comm 51(52):10490–10493

    Article  CAS  Google Scholar 

  35. Liu Y, Dong X, Chen P (2012) Chem Soc Rev 41(6):2283–2307

    Article  CAS  Google Scholar 

  36. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) TrAC Trends Anal Chem 29(9):954–965

    Article  CAS  Google Scholar 

  37. Yang T, Kong Q, Li Q, Wang X, Chen L, Jiao K (2014) Polym Chem 5(7):2214

    Article  CAS  Google Scholar 

  38. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25(4):901–905

    Article  CAS  Google Scholar 

  39. Seenivasan R, Maddodi N, Setaluri V, Gunasekaran S (2015) Biosens Bioelectron 68:508–515

    Article  CAS  Google Scholar 

  40. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  41. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  42. Ren P-G, Yan D-X, Ji X, Chen T, Li Z-M (2011) Nanotechnology 22(5):055705

    Article  Google Scholar 

  43. Zhang H, Han Y, Guo Y, Dong C (2012) J Mater Chem 22(45):23900

    Article  CAS  Google Scholar 

  44. Costa SD, Ek Weis J, Frank O, Bastl Z, Kalbac M (2015) Carbon 84:347–354

    Article  CAS  Google Scholar 

  45. Cheng R, Liu Y, Ou S, Pan Y, Zhang S, Chen H, Dai L, Qu J (2012) Anal Chem 84(13):5641–5644

    Article  CAS  Google Scholar 

  46. Liu H, Wang G, Chen D, Zhang W, Li C, Fang B (2008) Sensors Actuators B Chem 128(2):414–421

    Article  CAS  Google Scholar 

  47. Davidson JN (1972) Nucleases and related enzymes. The Biochemistry of the Nucleic Acids 7th ed Cox & Nyman, Norfolk, UK:P. 129

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21401049, 51272071, and 51203045) and Hubei Provincial Department of Science and Technology (2014CFA096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Mei or Xianbao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Mei, T., Chen, Y. et al. A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. J Solid State Electrochem 20, 2055–2062 (2016). https://doi.org/10.1007/s10008-016-3214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3214-7

Keywords

Navigation