Skip to main content
Log in

Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive molecularly imprinted sensor for L-cysteine (Cys) determination was designed and fabricated by electrodeposition method. The molecularly imprinted polymer (MIP) film was prepared by electrodeposition chitosan (CS) in the presence of Cys after depositing nanoporous gold (np-Au) and copper nanoparticles (CuNPs) onto a glassy carbon electrode (GCE) surface. The morphology and composition of CuNPs/np-Au/GCE were characterized by SEM and energy dispersive spectroscopy (EDS). The MIP/CuNPs/np-Au/GCE sensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor displayed an excellent recognition to Cys upon measuring the variation of the oxidation current of Cys. The current response was linear to the logarithm concentration of the analyte in the range of 0.5 nM–10 μM, with a detection limit of 0.7 × 10−10 mol⋅L−1. The sensor showed good selectivity and reproducibility. The prepared sensor was successfully applied to the determination of Cys in bovine serum and sauce of instant noodle samples with satisfactory recoveries ranging from 93.0 to 110.0 %. The desirable performances may be attributed to the synergic catalytic effect and large surface area of CuNPs/np-Au nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ardakani MM, Rahimi P, Karami PE, Zare HR, Naeimi H (2007) Electrocatalytic oxidation of cysteine by quinizarine at glassy carbon electrode. Sensors Actuators B Chem 123:763–768

    Article  CAS  Google Scholar 

  2. Jin GP, Chen LL, Hang GP, Yang SZ, Wu XJ (2010) Stripping chronopotentiometric analysis of cysteine on nano-silver coat polyquercetin–MWCNT modified platinum electrode. J Solid State Electrochem 14:1163–1169

    Article  CAS  Google Scholar 

  3. Perevezentseva DO, Gorchakov EV (2012) Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles. J Solid State Electrochem 16:2405–2410

    Article  CAS  Google Scholar 

  4. Wang Y, Peng W, Liu L, Gao F, Li M (2012) The electrochemical determination of l-cysteine at a Ce-doped Mg–Al layered double hydroxide modified glassy carbon electrode. Electrochim Acta 70:193–198

    Article  CAS  Google Scholar 

  5. Nolin TD, McMenamin ME, Himmelfarb J (2007) Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B 852:554–561

    Article  CAS  Google Scholar 

  6. Wang Y, Lu J, Tang L, Chang H, Li J (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81:9710–9715

    Article  CAS  Google Scholar 

  7. Chen X, Liu H, Wang C, Hu H, Wang Y, Zhou X, Hu J (2015) A label-free fluorescence turn-on sensor for rapid detection of cysteine. Talanta 138:144–148

    Article  CAS  Google Scholar 

  8. Chen SM, Wang CH (2007) The electrocatalytic reactions of adenine, guanine, H2O, H2O2, N2H4, and l-cysteine catalyzed by poly(Ni(4-TMPyP)) film-modified electrodes. J Solid State Electrochem 11:581–591

    Article  CAS  Google Scholar 

  9. Ojani J, Raoof JB, Zarei E (2010) Preparation of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode: application to electrocatalytic oxidation of L-cysteine. J Electroanal Chem 638:241–245

    Article  CAS  Google Scholar 

  10. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  CAS  Google Scholar 

  11. Wang P, Jing X, Zhang W, Zhu G (2001) Renewable manganous hexacyanoferrate-modified graphite organosilicate composite electrode and its electrocatalytic oxidation of l-cysteine. J Solid State Electrochem 5:369–374

    Article  CAS  Google Scholar 

  12. Sheng QL, Yu H, Zheng JB (2008) Solid state electrochemical of the erbium hexacyanoferrate-modified carbon ceramic electrode and its electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 12:1077–1084

    Article  CAS  Google Scholar 

  13. Pandey P, Pandey AK, Chauhan DS (2012) Nanocomposite of Prussian blue based sensor for L-cysteine: synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochim Acta 74:23–31

    Article  CAS  Google Scholar 

  14. Gallo MC, Pires BM, Toledo KCF, Jannuzzi SAV, Arruda EGR, Formiga ALB, Bonacin JA (2014) The use of modified electrodes by hybrid systems gold nanoparticles/Mn-porphyrin in electrochemical detection of cysteine. Synth Met 198:335–339

    Article  CAS  Google Scholar 

  15. Ardakani MM, Naeimi ATH, Barzoky MN, Taghavinia N (2009) Fabrication of modified TiO2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and L-cysteine. J Solid State Electrochem 13:1433–1440

    Article  CAS  Google Scholar 

  16. Mo Z, Zhao F, Xiao F, Zeng B (2010) Preparation and characterization of AuPt alloy nanoparticle–multi-walled carbon nanotube-ionic liquid composite film for electrocatalytic oxidation of cysteine. J Solid State Electrochem 14:1615–1620

    Article  CAS  Google Scholar 

  17. Peng Y, Wu Z, Liu Z (2014) An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal Methods 6:5673–5681

    Article  CAS  Google Scholar 

  18. Li L, Fan L, Dai Y, Kan X (2015) Recognition and determination of bovine hemoglobin using a gold electrode modified with gold nanoparticles and molecularly imprinted self-polymerized dopamine. Microchim Acta 182:2477–2483

    Article  CAS  Google Scholar 

  19. Wang Z, Li J, Xu L, Feng Y, Lu X (2014) Electrochemical sensor for determination of aflatoxin B1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic nanoparticles. J Solid State Electrochem 18:2487–2496

    Article  CAS  Google Scholar 

  20. Suryanarayanan V, Wu CT, Ho KC (2010) Molecularly imprinted electrochemical sensors. Electroanalysis 22:1795–1811

    Article  CAS  Google Scholar 

  21. Li S, Du D, Huang J, Tu H, Yang Y, Zhang A (2013) One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 138:2761–2276

    Article  CAS  Google Scholar 

  22. Lian HT, Liu B, Chen YP, Sun XY (2012) A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal Biochem 426:40–46

    Article  CAS  Google Scholar 

  23. Chen YP, Liu B, Lian HT, Sun XY (2011) Preparation and application of urea electrochemical sensor based on chitosan molecularly imprinted films. Electroanalysis 23:1454–1461

    Article  CAS  Google Scholar 

  24. Rezaei B, Boroujeni MK, Ensafi AA (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron 66:490–496

    Article  CAS  Google Scholar 

  25. Liu Y, Liu J, Tang H, Liu J, Xu B, Yu F, Li Y (2015) Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors Actuators B Chem 206:647–652

    Article  Google Scholar 

  26. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y, Jing T (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128

    Article  CAS  Google Scholar 

  27. Bai H, Wang C, Chen J, Peng J, Cao Q (2015) A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens Bioelectron 64:352–358

    Article  CAS  Google Scholar 

  28. Cui M, Huang J, Wang Y, Wu Y, Luo X (2015) Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosens Bioelectron 68:563–569

    Article  CAS  Google Scholar 

  29. Tanaka S, Minato T, Ito E, Hara M, Kim Y, Yamamoto Y, Asao N (2013) Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides. Chem Eur J 19:11832–11836

    Article  CAS  Google Scholar 

  30. Lang XY, Hirata A, Fujita T, Chen MW (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  31. Xiao X, Wang ME, Li H, Si PC (2013) One-step fabrication of bio-functionalized nanoporous gold/poly(3,4-ethylenedioxythiophene) hybrid electrodes for amperometric glucose sensing. Talanta 116:1054–1059

    Article  CAS  Google Scholar 

  32. Roushani M, Dizajdizi BZ (2015) Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catal Commun 69:133–137

    Article  CAS  Google Scholar 

  33. Yang P, Gao X, Wang L, Wu Q, Chen Z, Lin X (2014) Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchim Acta 181:231–238

    Article  CAS  Google Scholar 

  34. Wu Y, Feng X, Zhou S, Shi H, Wu H, Zhao S, Song W (2013) Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid. Microchim Acta 180:1325–1332

    Article  CAS  Google Scholar 

  35. Yang S, Li H, Zha W, Sun Q, Zheng L, Chen A (2013) Highly sensitive lable-free electrochemical aptasensor for thrombin detection with cobalt hexacyanoferrate as the electrochemical probe. J Solid State Electrochem 17:2603–2610

    Article  Google Scholar 

  36. Bonroy K, Friedt JM, Frederix F, Laureyn W, Langerock S, Campitelli A, Sara M, Borghs G, Goddeeris B, Declerck P (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76:4299–4306

    Article  CAS  Google Scholar 

  37. Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Article  CAS  Google Scholar 

  38. Lu L, Dong Y, Wang J, Li Q, Wu X (2015) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode: a new strategy to improve the orientation of immobilized enzymes. Anal Methods 7:6686–6694

    Article  CAS  Google Scholar 

  39. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Tadjarodi A, Fakhari AR (2013) A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens Bioelectron 42:426–429

    Article  CAS  Google Scholar 

  40. Ge S, Yan M, Lu J, Zhang M, Yu F, Yu J, Song X, Yu S (2012) Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for l-cysteine analysis. Biosens Bioelectron 31:49–54

    Article  CAS  Google Scholar 

  41. Abbas MN, Saeed AA, Singh B, Radowan AA, Dempsey E (2015) A cysteine sensor based on a gold nanoparticle-iron phthalocyanine modified graphite paste electrode. Anal Methods 7:2529–2536

    Article  CAS  Google Scholar 

  42. Aswini KK, Mohan AMV, Biju VM (2014) Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode. Mat Sci Eng C 37:321–326

    Article  CAS  Google Scholar 

  43. Silva FDD, da Silva MGA, Lima PR, Meneghetti MR, Kubota LT, Goulart MOF (2013) A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosens Bioelectron 50:202–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21465012, 21065004) and Scientific Research Fund of Jiangxi Provincial Education Department (GJJ150544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoming Yang.

Electronic supplementary material

ESM 1

(DOC 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zheng, Y., Zhang, X. et al. Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine. J Solid State Electrochem 20, 2037–2044 (2016). https://doi.org/10.1007/s10008-016-3213-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3213-8

Keywords

Navigation