Skip to main content

Advertisement

Log in

Graphene and its nanocomposites used as an active materials for supercapacitors

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This review article investigates the hot topics by presenting the latest advances on graphene-based nanostructures for supercapacitors. In literature, many scientists have studied the nanomaterials and combination of conducting polymers in supercapacitor (SC) devices. The main aim of this review article is to present the higher capacitance, and higher power and energy density performances of the SC devices, which includes the active materials of carbon-based materials, metal oxides, conducting polymers, nanocomposites, etc. Many conventional techniques have already been used such as photolithography, inkjet printing, etc. Each of these methods has specific advantages and some drawbacks, with some working better in different environments. Among various nanoscaled materials, nanocrystal oxides of transition metals play an important role in advanced materials development. In addition to design of active material, symmetric and asymmetric supercapacitor device fabrication is also directly effect to obtain a higher capacitance, energy and power density performances. Therefore, this review article focuses on supercapacitor technology in new developments, such as design of active materials, device fabrication, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aldred MP, Contoret AEA, Farrar SR, Kelly SM, Mathieson D, O’Neill M, Tsoi WC, Vlachos P (2005) A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv Mater 17:1368–1372

    Article  CAS  Google Scholar 

  2. Beh WS, Kim IT, Qin D, Xia Y, Whitesides GM (1999) Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication. Adv Mater 11:1038–1041

    Article  CAS  Google Scholar 

  3. Pisignano D, Persano L, Raganato MF, Visconti P, Cingolani R, Barbarella G, Favaretto L, Gigli G (2004) Room-temperature nanoimprint lithography of non-thermoplastic organic films. Adv Mater 16:525–529

    Article  CAS  Google Scholar 

  4. Sun Y, Liu Y, Zhu D (2005) Advances in organic field-effect transistors. J Mater Mater 15:53–65

    CAS  Google Scholar 

  5. Huang L, Braunschweig AB, Shim W, Qin L, Lim JK, Hurst SJ, Huo F, Xue C, Jang JW, Mirkin CA (2010) Matrix-assisted dip-pen nanolithography and polymer pen lithography. Small 6:1077–1081

    Article  CAS  Google Scholar 

  6. Argun AA, Reynolds JR (2005) Line patterning for flexible and laterally configured electrochromic devices. J Mater Chem 15:1793–1800

    Article  CAS  Google Scholar 

  7. Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290

    Article  CAS  Google Scholar 

  8. Ma YF, Chang HC, Zhang M, Chen YS (2015) Graphene-based materials for lithium-ion hybrid supercapacitors. Adv Mater 27:5296–5308

    Article  CAS  Google Scholar 

  9. Li X, Wei BQ (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173

    Article  CAS  Google Scholar 

  10. Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor. J Phys Chem C 111:7727–7734

    Article  CAS  Google Scholar 

  11. Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  12. Shi C, Zhitomirsky I (2008) Electrodeposition and capacitive behaviour of films for electrodes of electrochemical supercapacitors. Nanoscale Res Lett 5:518–523

    Article  CAS  Google Scholar 

  13. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GC (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52:7377–7385

    Article  CAS  Google Scholar 

  14. Subramanian V, Zhu H, Wei B (2006) Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun 8:827–832

    Article  CAS  Google Scholar 

  15. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  16. Zhang LL, Zhao XS (2009) Carbon based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  17. Zheng JP (2005) Theoretical energy density for electrochemical capacitors with intercalation electrodes. J Electrochem Soc 152:A1864–A1869

    Article  CAS  Google Scholar 

  18. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  CAS  Google Scholar 

  19. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  20. Fletcher S, Jane Black VJ, Kirkpatrick I (2014) A universal eqivalent circuit for carbon-based supercapacitors. J Solid State Electrochem 18:1377–1387

    Article  CAS  Google Scholar 

  21. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  22. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  23. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  24. Burke A (2000) Ultracapacitors: why, how and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  25. Kiani M, Mousavi M, Rahmanifar M (2011) Synthesis of nano and micro-particles of LiMn2O4: electrochemical investigation and assesment as a cathode in Li battery. Int J Electrochem Sci 6:2581–2595

    CAS  Google Scholar 

  26. Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159:1717–1722

    Article  CAS  Google Scholar 

  27. Kiani MA, Mousavi MF, Ghasemi S (2010) Size effect investigation on battery performance: comparison between micro and nano particles of beta-Ni. J Power Sources 195:5794–5800

    Article  CAS  Google Scholar 

  28. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  29. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  30. Zhao J, Chen J, Xu SM, Shao MF, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946

    Article  CAS  Google Scholar 

  31. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 10:4245–4269

    Article  CAS  Google Scholar 

  32. Ji JY, Li Y, Peng WC, Zhang GL, Zhang FB, Fan XB (2015) Advanced graphene-based binder free electrodes for high-performance energy storage. Adv Mater 27:5264–5279

    Article  CAS  Google Scholar 

  33. Zuliani JE, Caguiat JN, Kirk DW, Jia CQ (2015) Considerations for consistent characterization of electrochemical double-layer capacitor performance. J Power Sources 290:136–143

    Article  CAS  Google Scholar 

  34. Wang D, Geng Z, Li B, Zhang C (2015) High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochim Acta 173:377–384

    Article  CAS  Google Scholar 

  35. Miller JR, Simon P (2008) Materials science-electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  36. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    Article  CAS  Google Scholar 

  37. Yue Y, Liang H (2015) Hierarchical micro-architectures of electrons for energy storage. J Power Sources 284:451–454

    Article  CAS  Google Scholar 

  38. Gao PC, Lu AH, Li WC (2011) Dual functions of activated carbon in a positive electrode for MnO(2)-based hybrid supercapacitor. J Power Sources 196:4095–4101

    Article  CAS  Google Scholar 

  39. Wen Z, Liu Y, Liu A, Zhu T, Zheng X, Gao Q, Wang D, Hu Z (2010) Influence of pore structure on the electrochemical performance of activated carbon as electrode material for aqueous supercapacitors. Funct Mater Lett 3:201–205

    Article  CAS  Google Scholar 

  40. Wang HQ, Li ZS, Huang YG, Li QY, Wang XY (2010) A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte. J Mater Chem 20:3883–3889

    Article  CAS  Google Scholar 

  41. Izadi-Najafabadi A, Futaba DN, Lijima S, Hata K (2010) Ion-diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes. J Am Chem Soc 132:18017–18019

    Article  CAS  Google Scholar 

  42. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  43. Zhou R, Meng C, Zhu F, Li Q, Liu C, Fan S, Jiang K (2010) High performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnol 21:345701

    Article  Google Scholar 

  44. Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21:2374–2380

    Article  CAS  Google Scholar 

  45. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  46. Kim TY, Lee HW, Stoller M, Dreyer DR, Bialawski CW, Ruoff RS, Suh KS (2011) High performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442

    Article  CAS  Google Scholar 

  47. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  48. Saliger R, Fischer U, Herta C, Fricke JJ (1998) High surface area carbon aerogels for supercapacitors. Non-Cryst Solids 225:81–85

    Article  CAS  Google Scholar 

  49. Zhu YQ, Zhang L, Chen XY, Xiao ZH, Zhang ZJ (2015) Natable improvement of capacitive performance of highly nanoporous carbon materials simply by a redox additive electrolyte of p-nitroaniline. J Power Sources 299:629–639

    Article  CAS  Google Scholar 

  50. Makino S, Ban T, Sugimoto W (2015) Towards implantable bio-supercapacitors: pseudocapacitance of ruthenium oxide nanoparticles and nanosheets in acids, buffered solutions, and bioelectrolytes. J Electrochem Soc 162:A5011–A5006

    Article  CAS  Google Scholar 

  51. Conway BE (1991) Transition from supercapacitor to battery behavior in electrochemical energy staorage. J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  52. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498

    Article  CAS  Google Scholar 

  53. Hwang SR, Teng H (2002) Capacitance enhancement of carbon fabric electrodes in electrochemical capacitors through electrodeposition with copper. J Electrochem Soc 149:A591–A596

    Article  CAS  Google Scholar 

  54. Kötz R, Carlen M (2000) Capacitance enhancement of carbon fabric electrodes in electrochemical capacitors through electrodeposition with copper. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  55. Yoon S, Jang JH, Ka BH, Oh SM (2005) Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness. Electrochim Acta 50:2255–2262

    Article  CAS  Google Scholar 

  56. Baughman RH (2003) Materials science—muscles made from metal. Science 300:268–269

    Article  CAS  Google Scholar 

  57. Balabajew M, Roling B (2015) Minimizing artifacts in three-electrode double layer capacitance measurements caused by stray capacitances. Electrochim Acta 176:907–918

    Article  CAS  Google Scholar 

  58. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwar Academic, New York NY

    Book  Google Scholar 

  59. Simon P, Gogotsi Y (2013) Capacitive energy staorage in nanostructured carbon-electrolyte systems. Acc Chem Res 46:1094–1103

    Article  CAS  Google Scholar 

  60. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  61. Xu MW, Jia W, Bao SJ, Su Z, Dong B (2010) Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochim Acta 55:5117–5122

    Article  CAS  Google Scholar 

  62. Brevnov DA, Olson TS (2006) Double layer capacitors composed of interconnected silver particles and with a high-frequency response. Electrochim Acta 51:1172–1177

    Article  CAS  Google Scholar 

  63. Zhang LL, Zhou R, Zhao XS (2010) Graphene based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  64. Lu W, Qu LT, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277

    Article  CAS  Google Scholar 

  65. Li C, Yang X, Zhang G (2015) Mesopore dominant activated carbon aerogels with high surface area for electric double-layer capacitor application. Mater Lett 161:538–541

    Article  CAS  Google Scholar 

  66. Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang LJ, Zhang XG (2011) Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3:529–545

    Article  CAS  Google Scholar 

  67. Zhang LL, Wei TX, Wang WJ, Zhao XS (2009) Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater 123:260–267

    Article  CAS  Google Scholar 

  68. Hu CC, Chang KH, Lin MC (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for nest generation supercapacitors. Nano Lett 612:2690–2695

    Article  CAS  Google Scholar 

  69. Chen WC, Wen TC (2003) Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J Power Sources 117:273–282

    Article  CAS  Google Scholar 

  70. Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  CAS  Google Scholar 

  71. Gongadze E, Iglic A (2015) Asymmetric size of ions and orientational ordering of water dipoles in electric double layer model-an analytical mean field approach. Electrochim Acta 178:541–545

    Article  CAS  Google Scholar 

  72. Chen L, Chen Y, Wu J, Wang J, Bai H, Li L (2014) Electrochemical supercapacitor with polymeric active electrolyte. J Mater Chem A 2:10526–10531

    Article  CAS  Google Scholar 

  73. Chen L, Bai H, Huang Z, Li L (2014) Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ Sci 7:1750–1759

    Article  CAS  Google Scholar 

  74. Zhao J, Liu B, Xu S, Yang J, Lu Y (2015) Fabrication and electrochemical properties of porous VN hollow nanofibers. J Alloys Compd 651:785–792

    Article  CAS  Google Scholar 

  75. Ghimbeu CM, Raymundo-Pinero E, Fioux P, Beguin F, Vix-Guterl C (2011) Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J Mater Chem 21:13268–13275

    Article  CAS  Google Scholar 

  76. Snook GA, Kao P, Best AS (2011) Conducting polymer based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  77. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18:1178–1182

    Article  CAS  Google Scholar 

  78. Pande P, Rasmussen PG, Thompson LT (2012) Charge storage on nanostructured early transition metal nitrides and carbides. J Power Sources 207:212–215

    Article  CAS  Google Scholar 

  79. Raymundo-Pinero E, Leroux F, Beguin F (2006) A high performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877–1882

    Article  CAS  Google Scholar 

  80. Lota G, Lota K, Frackowiak E (2007) Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun 9:1828–1832

    Article  CAS  Google Scholar 

  81. Salunkhe RR, Jang K, Lee S, Ahn H (2012) Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RCS Adv 1:3190–3193

    Google Scholar 

  82. Salunkhe RR, Jang K, Lee S, Yu S, Ahn H (2012) Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications. J Mater Chem 22:21630–21635

    Article  CAS  Google Scholar 

  83. Roldan S, Blanco C, Granda M, Menendez R, Santamaria R (2011) Towards a further generation of high-energy carbon based capacitors by using redox active electrolytes. Angew Chem Int Ed 50:1699–1701

    Article  CAS  Google Scholar 

  84. Jang K, Yu S, Park SH, Kim HS, Ahn H (2015) Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel-foam for high performance supercapacitor applications. J Alloys and Compounds 618:227–232

    Article  CAS  Google Scholar 

  85. Liu W, Aguilar RV, Hao Y, Ruoff RS, Armitage NP (2011) Broadband microwave and time-domain terahertz spectroscopy of chemical vapor deposition grown graphene. J Appl Phys 110: 083510

  86. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  87. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  88. Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594

    Article  CAS  Google Scholar 

  89. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  Google Scholar 

  90. Zhu YW, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122

    Article  CAS  Google Scholar 

  91. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  92. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  93. Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422–3427

    Article  CAS  Google Scholar 

  94. Stankovich S, Dikin DA, Priner RD, Kohlhaas KA, Kleinhammes A, Yuan Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  95. Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  96. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, Wu ZS, Gentle L, Lu GQ, Chen HM (2009) Fabrication of graphene/polyaniline composite paper via in-situ anodic electropolymerization for high performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  97. Yoo J, Balakrishnan K, Huang J, Meunier V, Sumpter B, Srivastava A, Conway M, Reddy A, Yu J, Vajtai R, Ajayan P (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    Article  CAS  Google Scholar 

  98. Zhuo Q, Ma Y, Gao J, Zhang P, Xia Y, Tran Y, Sun X, Zhong J, Sun X (2013) Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg Chem 52:3141–3147

    Article  CAS  Google Scholar 

  99. Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718

    Article  CAS  Google Scholar 

  100. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134:4905–4917

    Article  CAS  Google Scholar 

  101. Han S, Wu D, Li S, Zhang F, Feng X (2014) Porous graphene materials for advanced electrochemical energy storage and coversion devices. Adv Mater 26:849–864

    Article  CAS  Google Scholar 

  102. Yang T, Chen H, Yang R, Wang X, Nan F, Jiao K (2015) Colloids Surfaces B Biointerfaces 133:24–31

    Article  CAS  Google Scholar 

  103. Yang T, Guan Q, Li QH, Meng L, Wang LL, Liu CX, Jiao K (2013) Large-area three-dimensional interconnected graphene oxide intercalated with self-doped polyamniline nanofibers as a free-standing electrocatalytic platform for adenine and guanine. J Mater Chem B 1:2926–2933

    Article  CAS  Google Scholar 

  104. Backes C, Hauke F, Hirsch A (2011) The potential of perylene bisimide derivatives for the solubilization of carbon nanotubes and graphene. Adv Mater 23:2588–2601

    Article  CAS  Google Scholar 

  105. Li F, Bao Y, Chai J, Zhang Q, Han D, Niu L (2010) Synthesis and application of widely soluble graphene sheets. Langmuir 26:12314–12320

    Article  CAS  Google Scholar 

  106. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphane-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  107. Le LT, Ervin MH, Qui H, Fuchs BE, Lee WY (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphane oxide. Electrochem Commun 13:355–358

    Article  CAS  Google Scholar 

  108. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  109. Yeh TF, Chen SJ, Yeh CS, Teng H (2013) Tuning the electronic structure of graphite oxide through ammonia treatment for photocatalytic generation of H-2 and O-2 from water splitting. J Phys Chem C 117:6516–6524

    Article  CAS  Google Scholar 

  110. Yeh TF, Teng CY, Chen SJ, Teng H (2014) Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater 26:3297–3303

    Article  CAS  Google Scholar 

  111. Johra FT, Jung WG (2015) Hydrothermally reduced graphene oxide as supercapacitor. Appl Surf Sci 357:1911–1914

    Article  CAS  Google Scholar 

  112. El Kady MF, Strong MV, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  113. Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R (2012) Partially reduced graphite oxide as an electrode material for electrochemical double-layer capacitors. Chem A Eur J 18:9125–9136

    Article  CAS  Google Scholar 

  114. Ghanbari K, Mousavi MF, Sharnsipur M, Karami H (2007) Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery. J Power Sources 170:513–519

    Article  CAS  Google Scholar 

  115. Karami H, Mousavi MF, Sharnsipur M (2003) A novel dry bipolar rechargeable battery based on polyaniline. J Power Sources 124:303–308

    Article  CAS  Google Scholar 

  116. Rahmanifar MS, Mousavi MF, Shamsipur M (2002) Effect of self-doped polyaniline on performance of secondary Zn-polyaniline battery. J Power Sources 110:229–232

    Article  CAS  Google Scholar 

  117. Ates M, Uludag N, Arican F (2014) Synthesis of 9H-carbazole-9-carbothioic methacrylic thioanhydride, electropolymerization, characterization and supercapacitor applications. Polym Bull 71:1557–1573

    Article  CAS  Google Scholar 

  118. Ghehaatian HR, Mousavi MF, Rahmanifar MS (2012) High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers. Electrochim Acta 78:212–222

    Article  CAS  Google Scholar 

  119. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949–1955

    Article  CAS  Google Scholar 

  120. Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv Mater 21:4383–4387

    Article  CAS  Google Scholar 

  121. Wallace GG, Chen J, Li D, Moulton SE, Razal JM (2010) Nanostructured carbon electrodes. J Mater Chem 20:3553–3562

    Article  CAS  Google Scholar 

  122. He YS, Bai DW, Yang XW, Chen J, Liao XZ, Ma ZF (2010) A Co(OH)(2)-graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun 12:570–573

    Article  CAS  Google Scholar 

  123. Zhu Y, Wang H, Zhu J, Chang L, Ye L (2015) Nanoindentation and thermal study of polyvinylalcohol/graphene oxide nanocomposite film through organic/inorganic assembly. Appl Surf Sci 349:27–34

    Article  CAS  Google Scholar 

  124. Zhao JQ, Wang YG, Yan PG, Ruan SC, Cheng JQ, Du GG, Yu YQ, Zhang GL, Wei HF, Luo J, Tsang YH(2012) Graphene-oxide-based q-switched fiber laser with stable five-wavelength operation. Chin Phys Lett 29(114206)

  125. Cao Y, Zhu M, Li P, Zhang R, Li X, Gong Q, Wang K, Zhong M, Wu D, Lin F, Zhu H (2013) Boosting supercapacitor performance of carbon fibers using electrochemically reduced graphene oxide additives. Phys Chem Phys 15:19550–19556

    Article  CAS  Google Scholar 

  126. Niu Y, Wang RG, Jiao WC, Ding GM, Hao LF, Yang F, He XD (2015) MoS2 graphene fiber based gas sensing devices. Carbon 95:34–41

    Article  CAS  Google Scholar 

  127. Stoller MD, Park SJ, Zhu YW, An JH (2008) Ruoff RS. Graphene-Based Ultracapacitors Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  128. Liu J, Yue Z, Fong H (2009) Continuous nanoscale carbon fibers with superior mechanical strength. Small 5:536–542

    Article  CAS  Google Scholar 

  129. Xu XW, Pei LY, Yang Y, Shen JF, Ye MX (2016) Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J Alloys Compd 654:23–31

    Article  CAS  Google Scholar 

  130. Meng YN, Zhao Y, Hu CG, Cheng HH, Hu Y, Zhang ZP, Shi GQ, Qu LT (2013) All-graphene core-sheath microfibers for all-soild-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331

    Article  CAS  Google Scholar 

  131. Li YR, Sheng KX, Yuan WJ, Shi GQ (2013) A high-performance flexible fibre-shaped electrochemically capacitor based on reduced graphene oxide. Chem Commun 49:291–293

    Article  Google Scholar 

  132. Jiang F, Fang Y, Xue Q, Chen L, Lu Y (2010) Graphene-based carbon nano-fibers grown on thin-sheet sinter-locked Ni-fiber as self-supported electrodes for supercapacitors. Mater Lett 64:199–202

    Article  CAS  Google Scholar 

  133. Bae J, Park YJ, Lee M, Cha SN, Choi YJ, Lee CS, Kim JM, Wang ZL (2011) Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv Mater 23:3446–3449

    Article  CAS  Google Scholar 

  134. Islam MS, Deng Y, Tong L, Faisal SN, Roy AK, Minett AI, Gomes VG (2016) Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon 96:701–710

    Article  CAS  Google Scholar 

  135. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  136. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  137. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  138. Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50:6851–6854

    Article  CAS  Google Scholar 

  139. Tang L, Wang Y, Liu Y, Li J (2011) DNA directed self-assembly by graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5:3817–3822

    Article  CAS  Google Scholar 

  140. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210

    Article  CAS  Google Scholar 

  141. Liu G, Zhuang XD, Chen Y, Zhang B, Zhu JH, Zhu CX, Neoh KG, Kang ET (2009) Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. Appl Phys Lett 95:253301

    Article  CAS  Google Scholar 

  142. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  CAS  Google Scholar 

  143. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  144. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  145. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161

    Article  CAS  Google Scholar 

  146. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181

    Article  CAS  Google Scholar 

  147. Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536

    Article  CAS  Google Scholar 

  148. Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085

    Article  CAS  Google Scholar 

  149. Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473

    Article  CAS  Google Scholar 

  150. Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601

    Article  CAS  Google Scholar 

  151. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  152. Liang SL, Li GF, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51:3513–3524

    Article  CAS  Google Scholar 

  153. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  154. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577

    Article  CAS  Google Scholar 

  155. Wen ZB, Yu F, You T, Zhu L, Zhang L, Wu YP (2016) A core-shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Mater Res Bull 74:241–247

    Article  CAS  Google Scholar 

  156. Shiraishi S, Kurihara H, Okabe K, Hulicova D, Oya A (2002) Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco(TM) buckytubes ™ in propylene carbonate electrolytes. Electrochem Commun 4:593–598

    Article  CAS  Google Scholar 

  157. Su DS, Schlogl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage. ChemSusChem 3:136–138

    Article  CAS  Google Scholar 

  158. Endo M, Maeda T, Kakeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS (2001) Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J Electrochem Soc 148:A910–A914

    Article  CAS  Google Scholar 

  159. Li B, Dai F, Xiao QF, Yang L, Shen JM, Zhang CM, Cai M (2016) Nitrogen doped activated carbon for a high energy hybrid supercapacitor. Energ Environ Sci 9:102–106

    Article  CAS  Google Scholar 

  160. Yang KS, Kim BH (2015) Highly conductive, porous RuO2/activated carbon nanofiber composites containing graphene for electrochemical capacitor electrodes. Electrochim Acta 186:337–344

    Article  CAS  Google Scholar 

  161. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructured: bulk synthesis and applications. Adv Mater 21:1487–1499

    Article  CAS  Google Scholar 

  162. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  Google Scholar 

  163. Volfkovich YM, Bobe SL, Shlepakov AV, Bagotskii VS (1993) Discharge macrokinetics of polyaniline electrodes. Russ Electrochem 29:794–804

    Google Scholar 

  164. Talbi H, Just PE, Dao LH (2003) Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors. J Appl Electrochem 33:465–473

    Article  CAS  Google Scholar 

  165. Zhou H, Chen H, Luo S, Lu G, Wei W, Kuang Y (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid-State Electrochem 9:574–580

    Article  CAS  Google Scholar 

  166. Ates M, Serin MA, Ekmen I, Ertas YN (2015) Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull 72:2573–2589

    Article  CAS  Google Scholar 

  167. Prasad KR, Munichandraiah N (2002) Potentiodynamically deposited polyaniline on stainless steel inexpensive, high-performance electrodes for electrochemical supercapacitors. J Electrochem Soc 149:A1393–A1399

    Article  CAS  Google Scholar 

  168. Ko JM, Nam JH, Won JH, Kim KM (2014) Supercapacitive properties of electrodeposited polyaniline electrode in acrylic gel polymer electrolytes. Synth Met 189:152–156

    Article  CAS  Google Scholar 

  169. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyer ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  170. Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Article  CAS  Google Scholar 

  171. Huang H, Gan M, Ma L, Yu L, Hu H, Yang F, Li Y, Ge C (2015) Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors. J Alloys Compd 630:214–221

    Article  CAS  Google Scholar 

  172. Bai Y, Tang Y, Wang ZH, Jia Z, Wu F, Wu C, Liu G (2015) Electrochemical performance of Si/CeO2/polyaniline composites as anode materials for lithium ion batteries. Solid State Ionics 272:24–29

    Article  CAS  Google Scholar 

  173. Feng X, Yan Z, Chen N, Zhang Y, Liu X, Ma Y, Yang X, Hou W (2013) Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J Chem 37:2203–2209

    Article  CAS  Google Scholar 

  174. Lessa KHS, Zhang Y, Zhang G, Xiao F, Wang S (2016) Conductive porous sponge-like ionic liquid graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor. J Power Sources 302:92–97

    Article  CAS  Google Scholar 

  175. Zhao ZH, Richardson GF, Meng QS, Zhu SM, Kuan HC, Ma J (2016) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27:042001

    Article  CAS  Google Scholar 

  176. Tong LY, Skorenko KH, Faucett AC, Boyer SM, Liu J, Mativetsky JM, Bernier WE, Jones WE (2015) Vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors. J Power Sources 297:195–201

    Article  CAS  Google Scholar 

  177. Zhao Q, Wang GX, Yan KP, Yan JX, Wang JZ (2015) Binder-free porous PEDOT electrodes for flexible supercapacitors. J Appl Polym Sci 132:42549

    Google Scholar 

  178. Zhang LL, Zhao SY, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624–17628

    Article  CAS  Google Scholar 

  179. Biswas S, Drzal LT (2010) Multi layered nanostructure of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  180. Xu CH, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  CAS  Google Scholar 

  181. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  182. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  CAS  Google Scholar 

  183. Sun W, Chen XY (2009) Preparation and characterization of polypyrrole films for three-dimensional microsupercapacitor. J Power Sources 193:924–929

    Article  CAS  Google Scholar 

  184. Zhang X, Yang WS, Ma YW (2009) Synthesis of polypyrrole-intercalated layered manganase oxide nanocomposite by a delamination/reassembling method and its electrochemical capacitance performance. Electrochem Solid-State Lett 12:A95–A98

    Article  CAS  Google Scholar 

  185. Sarac AS, Sezgin S, Ates M, Turhan CM (2008) Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes. Surf Coat Technol 202:3997–4005

    Article  CAS  Google Scholar 

  186. Zhang LL, Li HH, Fan CY, Wang K, Wu XL, Sun HZ, Xie HM, Zhang JP (2015) Polypyrrole nanosphere embedded in wrinkled graphene layers to obtain cross-linking network for high performance supercapacitors. Electrochim Acta 184:179–185

    Article  CAS  Google Scholar 

  187. Gan JK, Lim YS, Huang NM, Lim HN (2015) Effect of pH on morphology and supercapacitive properties of manganese oxide/polypyrrole nanocomposite. Appl Surf Sci 357:479–486

    Article  CAS  Google Scholar 

  188. Pepin-Donat B, Viallat A, Blachot JF, Lombart C (2006) Electromechanical polymer gels combining rubber elasticity with electronic conduction. Adv Mater 18:1401–1405

    Article  CAS  Google Scholar 

  189. Dai T, Qing X, Lu Y, Xia Y (2009) Conducting hydrogels with enhanced mechanical strength. Polymer 50:5236–5241

    Article  CAS  Google Scholar 

  190. Xing LB, Hou SF, Zhang JL, Zhou J, Li Z, Si W, Zhuo S (2015) A facile preparation of three-dimensional N, S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Mater Lett 147:97–100

    Article  CAS  Google Scholar 

  191. Qin H, Gong T, Jin Y, Cho Y, Shin C, Lee C, Kim T (2015) Near UV-emitting graphene quantum dots from graphene hydrogels. Carbon 94:181–188

    Article  CAS  Google Scholar 

  192. Mao S, Lu G, Chen J (2015) Three-dimensional graphene based composites for energy applications. Nanoscale 7:6924–6943

    Article  CAS  Google Scholar 

  193. Wu J, Tao K, Miao JM, Norford LK (2015) Improved selectivity and sensitivity of gas sensing using a 3D reduced graphene oxide hydrogel with an integrated microheater. ACS Appl Mater@Interfaces 7:27502–27510

    Article  CAS  Google Scholar 

  194. Tang Q, Chen M, Wang G, Bao H, Saha P (2015) A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. J Power Sources 284:400–408

    Article  CAS  Google Scholar 

  195. Wu ZS, Yang SB, Parvez K, Feng XL, Mullen K (2012) 3D-nitrogen doped graphene aerogel supported Fe3O4 nanoparticles as efficient electrocatalyts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085

    Article  CAS  Google Scholar 

  196. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430

    Article  CAS  Google Scholar 

  197. Su YX, Huang XQ, Lin ZY, Zhong X, Huang Y, Duan XF (2013) One-step strategy to graphene/Ni(OH)(2) hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res 6:65–76

    Article  CAS  Google Scholar 

  198. Yuan J, Zhu J, Bi H, Meng X, Liang S, Zhang L, Wang X (2013) Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties. Phys Chem Chem Phys 15:12940–12945

    Article  CAS  Google Scholar 

  199. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  200. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene cobalt oxide electrode for high performance supercapacitor and enzymeles glucose detection. ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  201. Lin TW, Dai CS, Tasi TT, Chou SW, Lin JY, Shen HH (2015) High-performance asymmetric supercapacitor based on Co3S8/3D graphene composite and graphene hydrogel. Chem Eng J 279:241–249

    Article  CAS  Google Scholar 

  202. Karthikeyan K, Amaresh S, Aravindan V, Lee YS (2013) Microwave assisted green synthesis of MgO-carbon nanotube composites as electrode material for high power and energy density supercapacitors. J Mater Chem A 1:4105–4111

    Article  CAS  Google Scholar 

  203. Karthikeyan K, Kalpana D, Amaresh S, Lee YS (2012) Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Adv 2:12322–12328

    Article  CAS  Google Scholar 

  204. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  205. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–2602

    Article  CAS  Google Scholar 

  206. Hu CC, Tsou TW (2003) The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies. Electrochem Commun 115:179–186

    CAS  Google Scholar 

  207. Shao YQ, Yi ZY, He C, Zhu JQ, Tang D (2015) Effects of annealing temperature on the structure and capacitive performance of nanoscale Ti/IrO2-ZrO2 electrodes. J Am Ceramic Soc 98:1485–1492

    Article  CAS  Google Scholar 

  208. Zhang HQ, Hu ZQ, Li M, Hu LW, Jiao SQ (2014) A high-performance supercapacitor based on polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J Mater Chem A 2:17024–17030

    Article  CAS  Google Scholar 

  209. Tu LL, Jia CY (2010) Conducting polymers as electrode materials for supercapacitors. Prog Chem 22:1610–1618

    CAS  Google Scholar 

  210. Bandara J, Willinger K, Thelakkat M (2011) Multichromophore light harvesting in hybrid solar cells. Phys Chem Chem Phys 13:12906–12911

    Article  CAS  Google Scholar 

  211. Liu CY, Holman ZC, Kortshagen UR (2009) Hybrid solar cells from P3HT and silicon nanocrystals. NanoLett 9:449–452

    Article  CAS  Google Scholar 

  212. Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid cells from regioregular polythiophene and ZnO nanoparticles. Adv Funt Mater 16:1112–1116

    Article  CAS  Google Scholar 

  213. Moon SJ, Baranoff E, Zakeeruddin SM, Yeh CY, Diau EWG, Gratzel M, Sivula K (2011) Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye. Chem Commun 47:8244–8246

    CAS  Google Scholar 

  214. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  215. Chang JK, Tsai WT (2003) Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J Electrochem Soc 150:A1333–A1338

    Article  CAS  Google Scholar 

  216. Pech D, Guay D, Brousse T, Belanger D (2008) Concept for charge storage in electrochemical capacitors with functionalized carbon electrodes. Electrochem Soc Interface 11:A202–A205

    CAS  Google Scholar 

  217. Atar N, Eren T, Yola ML, Wang S (2015) Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics 21:3185–3192

    Article  CAS  Google Scholar 

  218. Sun X, Zhang X, Zhang H, Zhang D, Ma Y (2012) A comparative study of activated carbon based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J Solid State Electrochem 16:2597–2603

    Article  CAS  Google Scholar 

  219. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4, and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

  220. Du X, Wang CY, Chen MM, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646

    Article  CAS  Google Scholar 

  221. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multiwalled carbon nanotube composites with core-shell structure as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    Article  CAS  Google Scholar 

  222. Wu M, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303

    Article  CAS  Google Scholar 

  223. Jiao Y, Liu Y, Yin BS, Zhang SW, Qu FY, Wu X (2015) High rate supercapacitor electrodes based alpha-Fe2O3 nanosheet networks anchored on a nickel foam. Sci Adv Mater 7:1395–1399

    Article  CAS  Google Scholar 

  224. Vidyadharan MM, Misnon II, Ismail J, Yusoff MM, Jose R (2015) High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. J Alloys Compd 633:22–30

    Article  CAS  Google Scholar 

  225. Liu WW, Li X, Zhu MH, He X (2015) High performance all solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

    Article  CAS  Google Scholar 

  226. Xu HH, Hu XL, Yang HL, Sun YM, Hu CC, Huang YH (2015) Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv Energy Mater 5:1401882

    Google Scholar 

  227. Algharaibeh Z, Liu XR, Pickup PG (2009) An asymmetric antraquinone-modified carbon/ruthenium oxide supercapacitor. J Power Sources 187:640–643

    Article  CAS  Google Scholar 

  228. Sennu P, Aravindan V, Lee YS (2016) High energy asymmetric supercapacitor with 1D@2D structured NiCo2O4@Co3O4 and jackfruit derived high surface area porous carbon. J Power Sources 306:248–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Murat Ates acknowledges Tubitak for financial support in UCLA, USA, by 2219 program grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M. Graphene and its nanocomposites used as an active materials for supercapacitors. J Solid State Electrochem 20, 1509–1526 (2016). https://doi.org/10.1007/s10008-016-3189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3189-4

Keywords

Navigation