Skip to main content

Advertisement

Log in

SO2 carry-over and sulphur formation in a SO2-depolarized electrolyser

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SO2-depolarized electrolysis (SDE) is considered as one of the most efficient hydrogen production methods. To maximize H2 production in SDE, the phenomena occurring in the cell need to be understood and controlled. In this work, electrochemically driven SO2 carry-over and elemental sulphur formation in cathode space are analysed by various methods: electrochemical, titration and photon correlation spectroscopy (PCS) under different conditions during SDE operation. The results indicate that SO2 carry-over is a fast process in an operating SDE and is difficult to control with only working parameter optimization. The PCS method provides SO2 carry-over information at early stages compared to other methods. Moreover, PCS might be further implemented as an in situ method for SDE system control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  Google Scholar 

  2. Stolten D, Krieg D (2010) Alkaline electrolysis—introduction and overview. In: Stolten D (ed) Hydrogen and fuel cells fundamentals, technologies and applications. Weinheim, Wiley-VCH, pp. 243–270

    Google Scholar 

  3. Juda W, Moulton DM (1967) Cheap hydrogen for basic chemicals. Chem Enging Prog 63:59–60

    Google Scholar 

  4. Gorensek MB, Staser JA, Stanford TG, Weidner JW (2009) A thermodynamic analysis of the SO2/H2SO4 system in SO2-depolarized electrolysis. Int J Hydrog Energy 34:6089–6095

    Article  CAS  Google Scholar 

  5. Lokkiluoto A, Taskinen PA, Gasik M, Kojo IV, Peltola H, Barker MH, Kleifges K-H (2012) Novel process concept for the production of H2 and H2SO4 by SO2-depolarized electrolysis. Environ Dev Sustain 14:529–540

    Article  Google Scholar 

  6. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  7. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95:6040–6044

    Article  CAS  Google Scholar 

  8. Colon-Mercado HR, Elvington MC, Hobbs DT (2008) Membrane characterization report for hybrid sulfur electrolyzer. Research report SRNS-STI-2008-00017 28 p.

  9. Junginger R, Struck BD (1982) Separators for the electrolytic cell of the sulphuric acid hybrid cycle. Int J Hydrog Energy 7:331–340

    Article  CAS  Google Scholar 

  10. Opeerman H, Kerres J, Krieg H (2012) SO2 crossover flux of Nafion and sFS-PBI membranes using a chronocoulometric (CC) monitoring technique. J Memb Sci 415-416:842–849

    Article  Google Scholar 

  11. Elvington MC, Colon-Mercado H, MaCatty S, Stone SG, Hobbs DT (2010) Evaluation of proton-conducting membranes for use in a sulfur dioxide depolarized electrolyzer. J Power Sources 195:2823–2829

    Article  CAS  Google Scholar 

  12. Staser JA, Weidner JW (2009) Sulfur dioxide crossover during the production of hydrogen and sulfuric acid in a PEM electrolyzer. J Electrochem Soc 156:B836–B841

    Article  CAS  Google Scholar 

  13. Peach R, Krieg HM, Kruger AJ, van der Westhuizen D, Bessarabov D, Kerres J (2014) Comparison of ionically and ionical-covalently cross-linked polyaromatic membranes for SO2 electrolysis. Int J Hydrog Energy 39:28–40

    Article  CAS  Google Scholar 

  14. Xue L, Zhang P, Chen S, Wang L, Wang J (2013) Sensitivity study of process parameters in membrane electrode assembly preparation and SO2 depolarized electrolysis. Int J Hydrog Energy 38:11017–11022

    Article  CAS  Google Scholar 

  15. Sivasubramanian P, Ramasamy RP, Freire FJ, Holland CE, Weidner JW (2007) Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer. Int J Hydrog Energy 32:463–468

    Article  CAS  Google Scholar 

  16. Steimke JL, STeeper TJ, Herman DT, Colon-Mercado HR, Elvington MC (2009) Method to prevent sulfur accumulation inside membrane electrode assembly. Research report SRNS-STI-2009-00134, 39 p.

  17. Staser J, Ramasamy RP, Sivasubramanian P, Weidner JW (2007) Effect of water on the electochemical oxidation of gas-phase SO2 in a PEM electrolyzer for H2 production. Electrochem Solid-State Lett 10:E17–E19

    Article  CAS  Google Scholar 

  18. Imamura D, Yamaguchi E (2009) Effect of air contaminants on electrolyte degradation in polymer electrolyte membrane fuel cells. ECS Trans 25:813–819

    Article  CAS  Google Scholar 

  19. Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U (2008) Measuring sub nanometer sizes using dynamic light scattering. J Nanoparticle Res 10:823–829

    Article  CAS  Google Scholar 

  20. Choudhury SR, Ghosh M, Mandal A, Chakravorty D, Pal M, Pradhan S, Goswami A (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90:733–743

    Article  Google Scholar 

  21. Deshpande AS, Khomane RB, Vaidya BK, Joshi RM, Harle AS, Kulkarni BD, (2008) Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in aqueous surfactant systems. Materials Research Society Symposium Proceedings 1103E.

  22. Santasalo-Aarnio A, Lokkiluoto A, Virtanen J, Gasik MM (2016) Performance of electrocatalytic gold coating on bipolar plates for SO2 depolarized electrolyser. J Power Sources 306:1–7

    Article  CAS  Google Scholar 

  23. Mukouyama Y, Kukichi M, Okamoto H (2008) Appearance of new potential oscillation during hydrogen evolution reaction by addition of Na2SO4 and K2SO4. J Electroanal Chem 617:179–184

    Article  CAS  Google Scholar 

  24. O’Brian JA, Hinkley JT, Donne SW, Lindquist S-E (2010) The electrochemical oxidation of aqueous sulfur dioxide: a critical review of work with respect to the hybrid sulfur cycle. Electrochim Acta 55:573–591

    Article  Google Scholar 

  25. Quijada C, Morallon E, Vazquez JL, Berlouis LEA (2000) Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media: a voltammetric and in-situ virbational study. Part II. Oxidation of SO2 on bare and sulphur-modified electrodes. Electrochim Acta 46:651–659

    Article  CAS  Google Scholar 

  26. Steimke JL, Steeper TJ, Colon-Mercado HR, Gorensek MB (2015) Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation. Int J Hydr Ene 40:13281–13294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7), the Fuel Cell and Hydrogen Joint Undertaking, under grant agreement no. 325320 of the SOL2HY2 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Santasalo-Aarnio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santasalo-Aarnio, A., Virtanen, J. & Gasik, M. SO2 carry-over and sulphur formation in a SO2-depolarized electrolyser. J Solid State Electrochem 20, 1655–1663 (2016). https://doi.org/10.1007/s10008-016-3169-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3169-8

Keywords

Navigation