Skip to main content
Log in

Facile immobilization of potassium-copper hexacyanoferrate nanoparticles using a room-temperature ionic liquid as an ionic binder and its application towards BHA determination

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a facile immobilization of copper hexacyanoferrate nanoparticles (CuHCFNP) on a paraffin wax-impregnated graphite electrode (PIGE) was carried out using the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) as an ionic binder. The characteristics of the CuHCFNP/EMIMBF4 gel-modified electrode were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, and the modified electrode morphology was also characterized using field emission scanning electron microscopy (FESEM). The electrocatalytic behavior of butylated hydroxyl anisole (BHA) at the modified electrode has been investigated in 0.1 M KNO3 in static and dynamic conditions. Under the optimum conditions, the oxidation peak current was proportional to the BHA concentration in the range from 1.5 to 1000 μM with a detection limit of 0.5 μM (S/N = 3). The proposed method was applied to determine BHA content in real samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Privett BJ, Shin JH, Schoenfisch MH (2008) Electrochemical sensors. Anal Chem 80:4499–4517

    Article  CAS  Google Scholar 

  2. Brett CMA, Brett AMO (2011) Electrochemical sensing in solution-origins, applications and future perspectives. J Solid State Electrochem 15:1487–1494

    Article  CAS  Google Scholar 

  3. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  4. Yi W, Liu J, Chen H, Gao Y, Li H (2015) Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor. J Solid State Electrochem 19:1511–1521

    Article  CAS  Google Scholar 

  5. Prabhu P, Babu RS, Narayanan SS (2014) Synergetic effect of Prussian blue film with gold nanoparticle graphite–wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem 18:883–891

    Article  CAS  Google Scholar 

  6. Babu RS, Prabhu P, Narayanan SS (2014) Enzyme-free selective determination of H2O2 and glucose using functionalized CuNP-modified graphite electrode in room temperature ionic liquid medium. RSC Adv 4:47497–47504

    Article  CAS  Google Scholar 

  7. de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15:3046–3062

    Article  Google Scholar 

  8. Jayalakshmi M, Scholz F (2000) Charge–discharge characteristics of a solid-state Prussian blue secondary cell. J Power Sources 87:212–217

    Article  CAS  Google Scholar 

  9. Narayanan SS, Scholz F (1999) A comparative study of the electrocatalytic activities of some metal hexacyanoferrates for the oxidation of hydrazine. Electroanalysis 11:465–469

    Article  CAS  Google Scholar 

  10. Pauliukaite R, Florescu M, Brett CMA (2005) Characterization of cobalt- and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors. J Solid State Electrochem 9:354–362

    Article  CAS  Google Scholar 

  11. de Morais A, Pissetti FL, Lucho AMS, Gushikem Y (2010) Influence of copper hexacyanoferrate film thickness on the electrochemical properties of self-assembled 3-mercaptopropyl gold electrode and application as a hydrazine sensor. J Solid State Electrochem 14:1383–1390

    Article  Google Scholar 

  12. Giorgetti M, Tonelli D, Berrettoni M, Aquilanti G, Minicucci M (2014) Copper hexacyanoferrate modified electrodes for hydrogen peroxide detection as studied by X-ray absorption spectroscopy. J Solid State Electrochem 18:965–973

    Article  CAS  Google Scholar 

  13. Yang M, Yang Y, Qu F, Lu Y, Shen G, Yu R (2006) Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes: preparation, characterization and bioapplication. Anal Chim Acta 571:211–217

    Article  CAS  Google Scholar 

  14. Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, de Torresi SIC (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23:6796–6800

    Article  CAS  Google Scholar 

  15. Rehman A, Zeng X (2012) Ionic liquids as green solvents and electrolytes for robust chemical sensor development. Acc Chem Res 45:1667–1677

    Article  CAS  Google Scholar 

  16. Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787

    Article  CAS  Google Scholar 

  17. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135

    Article  CAS  Google Scholar 

  18. Kazemi SH, Karimi B, Fashi A, Behzadnia H, Vali H (2014) High-performance supercapacitors based on an ionic liquid-derived nanofibrillated mesoporous carbon. J Solid State Electrochem 18:2419–2424

    Article  CAS  Google Scholar 

  19. Kuang Y, Wu B, Hu D, Zhang X, Chen J (2012) One-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes for electrocatalytic oxidation of glucose. J Solid State Electrochem 16:759–766

    Article  CAS  Google Scholar 

  20. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  21. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155

    Article  CAS  Google Scholar 

  22. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  23. Wang X, Cheng C, Dong R, Hao J (2012) Sensitive voltammetric determination of rutin at a carbon nanotubes-ionic liquid composite electrode. J Solid State Electrochem 16:2815–2821

    Article  CAS  Google Scholar 

  24. Sun W, Duan Y, Li Y, Gao H, Jiao K (2009) Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination. Talanta 78:695–699

    Article  CAS  Google Scholar 

  25. Babu RS, Prabhu P, Narayanan SS (2011) Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferarrate nanoparticles composite electrode. Colloids Surf B 88:755–763

    Article  CAS  Google Scholar 

  26. Babu RS, Prabhu P, Narayanan SS (2012) Electrocatalytic oxidation of acetaminophen using 1-ethyl-3-methylimidazolium tetrafluoroborate-nickel hexacyanoferrate nanoparticles gel modified electrode. J Chem Pharm Res 4:3592–3600

    Google Scholar 

  27. de la Fuente C, Acuna JA, Vazquez MD, Tascon ML, Batanero PS (1999) Voltammetric determination of the phenolic antioxidants 3-tert-butyl-4-hydroxyanisole and tert-butylhydroquinone at a polypyrrole electrode modified with a nickel phthalocyanine complex. Talanta 49:441–452

    Article  Google Scholar 

  28. Jayasri D, Narayanan SS (2006) Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as electrocatalyst. Sensors Actuators B Chem 119:135–142

    Article  CAS  Google Scholar 

  29. Kumar SS, Narayanan SS (2008) Mechanically immobilized nickel aquapentacyanoferrate modified electrode as an amperometric sensor for the determination of BHA. Talanta 76:54–59

    Article  CAS  Google Scholar 

  30. Scholz F, Lange B (1992) Abrasive stripping voltammetry—an electrochemical solid state spectroscopy of wide applicability. Trends Anal Chem 11:359–367

    Article  CAS  Google Scholar 

  31. Kong Q, Chen X, Yao J, Xue D (2005) Preparation of poly(N-vinyl-2-pyrrolidone)-stabilized transition metal (Fe, Co, Ni and Cu) hexacyanoferrate nanoparticles. Nanotechnol 16:164–168

    Article  CAS  Google Scholar 

  32. Zakharchuk NF, Meyer B, Hennig H, Scholz F, Jaworksi A, Stojek Z (1995) A comparative study of Prussian blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian blue. J Electroanal Chem 398:23–35

    Article  Google Scholar 

  33. Dussel H, Dostal A, Scholz F (1996) Hexacyanoferrate-based composite ion-selective electrodes for voltammetry. Fresenius J Anal Chem 355:21–28

    Article  Google Scholar 

  34. Shankaran DR, Uehera N, Kato T (2003) A metal dispersed sol/gel biocomposite amperometric glucose biosensor. Biosens Bioelectron 18:721–728

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the University Grants Commission (UGC), New Delhi, and the Department of Science and Technology, New Delhi, for the financial assistance through the “PURSE” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Sriman Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, R.S., Prabhu, P. & Narayanan, S.S. Facile immobilization of potassium-copper hexacyanoferrate nanoparticles using a room-temperature ionic liquid as an ionic binder and its application towards BHA determination. J Solid State Electrochem 20, 1575–1583 (2016). https://doi.org/10.1007/s10008-016-3161-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3161-3

Keywords

Navigation