Skip to main content
Log in

A new sensor architecture based on carbon Printex 6L to the electrochemical determination of ranitidine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) modified with carbon Printex 6L (Printex6L/GCE) as a novel sensor is proposed. A morphological study was carried out using scanning electron microscopy, and an electrochemical characterization of the proposed electrode was performed by cyclic voltammetry (CV) using [Fe(CN)6]4− as a redox probe. With the incorporation of the carbon Printex 6L film onto the GCE surface, the [Fe(CN)6]4− analytical signal was substantially increased and the difference between the oxidation and reduction potentials (ΔE p) decreased, a characteristic of the electrocatalytic effect. Furthermore, the use of carbon Printex 6L film resulted in an 84 % increase in the oxidation current and a 123 % increase in the reduction current. Faster charge transfer was observed at the proposed electrode/electrolyte interface during CV when compared with GCE. The Printex6L/GCE was tested for ranitidine (RNT) sensing and showed a decrease in the working potential and an increase in the analytical signal, when compared with GCE, again demonstrating an electrocatalytic effect. Under optimized experimental conditions, the developed square-wave adsorptive anodic stripping voltammetry (SWAdASV) method presented an analytical curve that was linear in RNT concentration range from 1.98 × 10−6 to 2.88 × 10−5 mol L−1 with a detection limit of 2.44 × 10−7 mol L−1. The developed Printex6L/GCE was successfully applied to the determination of RNT concentrations in human body fluid samples (urine and serum).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teixeira MFS, Marcolino-Junior LH, Fatibello-Filho O, Dockal ER, Cavalheiro ETG (2004) J Braz Chem Soc 15(6):803–808

    Article  CAS  Google Scholar 

  2. Zhao X, Zhuang Q-C, Shi Y-L, Zhang X-X (2015) J Appl Electrochem 45(9):1013–1023

    Article  CAS  Google Scholar 

  3. Ding W, Wu M, Liang M, Ni H, Li Y (2015) Anal Lett 48(10):1551–1569

    Article  CAS  Google Scholar 

  4. Thamer BM, El-Newehy MH, Al-Deyab SS, Abdelkareem MA, Kim HY, Barakat NAM (2015) Appl Catal A 498:230–240

    Article  CAS  Google Scholar 

  5. Vicentini FC, Silva TA, Pellatieri A, Janegitz BC, Fatibello-Filho O, Faria RC (2014) Microchem J 116:191–196

    Article  CAS  Google Scholar 

  6. Oliveira GG, Janegitz BC, Zucolotto V, Fatibello-Filho O (2013) Cent Eur J Chem 11(11):1837–1843

    CAS  Google Scholar 

  7. Vicentini FC, Figueiredo-Filho LCS, Janegitz BC, Santiago A, Pereira ER, Fatibello-Filho O (2011) Quim Nova. 34(5):825–830

    CAS  Google Scholar 

  8. Barberis A, Spissu Y, Fadda A, Azara E, Bazzu G, Marceddu S, Angioni A, Sanna D, Schirra M, Serra PA (2015) Biosens Bioelectron 67:214–223

    Article  CAS  Google Scholar 

  9. Gao YF, Yang T, Yang XL, Zhang YS, Xiao BL, Hong J, Sheibani N, Ghourchian H, Hong T, Moosavi-Movahedi AA (2014) Biosens Bioelectron 60:30–34

    Article  CAS  Google Scholar 

  10. Chekin F, Bagheri S, Abd Hamid SB (2014) J Solid State Electrochem 18(4):893–898

    Article  CAS  Google Scholar 

  11. Lourencao BC, Medeiros RA, Thomasi SS, Ferreira AG, Rocha-Filho RC, Fatibello-Filho O (2016) Sensor Actuat B-Chem 222:181–189

    Article  CAS  Google Scholar 

  12. Lourencao BC, Baccarin M, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2013) J Electroanal Chem 707:15–19

    Article  CAS  Google Scholar 

  13. Briones M, Casero E, Petit-Dominguez MD, Ruiz MA, Parra-Alfambra AM, Pariente F, Lorenzo E, Vazquez L (2015) Biosens Bioelectron 68:521–528

    Article  CAS  Google Scholar 

  14. Liu L, Song C, Zhang Z, Yang J, Zhou L, Zhang X, Xie G (2015) Biosens Bioelectron 70:351–357

    Article  CAS  Google Scholar 

  15. Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O (2015) Electrochim Acta 157:125–133

    Article  CAS  Google Scholar 

  16. Huang Y, Yan H, Tong Y (2015) J Electroanal Chem 743:25–30

    Article  CAS  Google Scholar 

  17. Sun J, Gan T, Meng W, Shi Z, Zhang Z, Liu Y (2015) Anal Lett 48(1):100–115

    Article  CAS  Google Scholar 

  18. Noskova GN, Zakharova EA, Kolpakova NA, Kabakaev AS (2012) J Solid State Electrochem 16(7):2459–2472

    Article  CAS  Google Scholar 

  19. JB Eastwood, AP Christensen, DR Armstrong, RN Bates J Solid State Electrochem 3(4):179–186

  20. Fu Y, Liu Y, Li Y, Li J, Qiao J, Zhang J (2015) J Solid State Electrochem 19(11):3355–3363

    Article  CAS  Google Scholar 

  21. Miranda-Hernández M, Ayala J, ME Rincón J Solid State Electrochem 7(5):264–270

  22. Zhutaeva GV, Bogdanovskaya VA, Davydova ES, Kazanskii LP, Tarasevich MR (2013) J Solid State Electrochem 18(5):1319–1334

    Article  Google Scholar 

  23. Watson AY, Valberg PA (2001) Am Ind Hyg Assoc J 62(2):218–228

    CAS  Google Scholar 

  24. Wang M-J, Gray CA, Reznek SA, Mahmud K, Kutsovsky Y (2000) Carbon black. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, New York

    Google Scholar 

  25. Long CM, Nascarella MA, Valberg PA (2013) Environ Pollut 181:271–286

    Article  CAS  Google Scholar 

  26. Bello D, Hsieh S-F, Schmidt D, Rogers E (2009) Nanotoxicology 3(3):249–261

    Article  CAS  Google Scholar 

  27. Fitzer E, Kochling KH, Boehm HP, Marsh H (1995) Pure Appl Chem 67(3):473–506

    Article  Google Scholar 

  28. Kaluza L, Larsen MJ, Zdrazil M, Gulkova D, Vit Z, Solcova O, Soukup K, Kostejn M, Bonde JL, Maixnerova L, Odgaard M (2015) Catal Today 256:375–383

    Article  CAS  Google Scholar 

  29. Huggins TM, Pietron JJ, Wang H, Ren ZJ, Biffinger JC (2015) Bioresour Technol 195:147–153

    Article  CAS  Google Scholar 

  30. Jang H, Ocon JD, Lee S, Lee JK, Lee J (2015) J Power Sources 296:433–439

    Article  CAS  Google Scholar 

  31. Lin HB, Huang WZ, Rong HB, Hu JN, Mai SW, Xing LD, Xu MQ, Li XP, Li WS (2015) J Power Sources 287:276–282

    Article  CAS  Google Scholar 

  32. Bauer W, Noetzel D, Wenzel V, Nirschl H (2015) J Power Sources 288:359–367

    Article  CAS  Google Scholar 

  33. Huang KJ, Zhang JZ, Jia YL, Xing K, Liu YM (2015) J Alloys Compd 641:119–126

    Article  CAS  Google Scholar 

  34. Biloul A, Contamin O, Scarbeck G, Savy M, Vandenham D, Riga J, Verbist JJ (1992) J Electroanal Chem 335(1–2):163–186

    Article  CAS  Google Scholar 

  35. Antonin VS, Assumpcao MHMT, Silva JCM, Parreira LS, Lanza MRV, Santos MC (2013) Electrochim Acta 109:245–251

    Article  CAS  Google Scholar 

  36. Barros WRP, Wei Q, Zhang G, Sun S, Lanza MRV, Tavares AC (2015) Electrochim Acta 162:263–270

    Article  CAS  Google Scholar 

  37. Reis RM, Valim RB, Rocha RS, Lima AS, Castro PS, Bertotti M, Lanza MRV (2014) Electrochim Acta 139:1–6

    Article  CAS  Google Scholar 

  38. Silva FL, Reis RM, Barros WRP, Rocha RS, Lanza MRV (2014) J Electroanal Chem 722:32–37

    Article  Google Scholar 

  39. Talarico D, Arduini F, Amine A, Moscone D, Palleschi G (2015) Talanta 141:267–272

    Article  CAS  Google Scholar 

  40. Deroco PB, Vicentini FC, Fatibello-Filho O (2015) Electroanalysis 27(9):2214–2220

    Article  CAS  Google Scholar 

  41. Vicentini FC, Raymundo-Pereira PA, Janegitz BC, Machado SAS, Fatibello-Filho O (2016) Sensor Actuat B-Chem 227:610–618

    Article  CAS  Google Scholar 

  42. Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, Seeber R (2015) Sensor Actuat B-Chem 212:536–543

    Article  CAS  Google Scholar 

  43. Brogden RN, Carmine AA, Heel RC, Speight TM, Avery GS (1982) Drugs 24(4):267–303

    Article  CAS  Google Scholar 

  44. Goodman LS, Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  45. Berzas Nevado JJ, Castaneda Penalvo G, Rodriguez Dorado RM, Rodriguez Robledo V (2013) J Chromatogr. B: Anal Technol Biomed Life Sci 921:56–63

    Google Scholar 

  46. Kiszkiel I, Starczewska B, Lesniewska B, Pozniak P (2015) J Pharm Biomed Anal 106:85–91

    Article  CAS  Google Scholar 

  47. Rosa SS, Barata PA, Martins JM, Menezes JC (2008) Talanta 75(3):725–733

    Article  CAS  Google Scholar 

  48. Stepanova EV, Arzamastsev AP, Titova AV (2009) Pharm Chem J 43(7):425–427

    Article  CAS  Google Scholar 

  49. Ahmad AKS, Kawy MA, Nebsen M (1999) Anal Lett 32(7):1403–1419

    Article  CAS  Google Scholar 

  50. Sastry CSP, Rao SG, Rao J, Naidu PY (1997) Anal Lett 30(13):2377–2390

    Article  CAS  Google Scholar 

  51. Altinoz S, Ozer D, Temizer A, Bayraktar Y (1992) Anal Lett 25(1):111–118

    Article  CAS  Google Scholar 

  52. Malagutti AR, Mazo LH (2003) J Braz Chem Soc 14(2):274–280

    Article  CAS  Google Scholar 

  53. Norouzi P, Ganjali MR, Daneshgar P (2007) J Pharmacol Toxicol Methods 55(3):289–296

    Article  CAS  Google Scholar 

  54. Pfaffen V, Ines Ortiz P (2010) Ind Eng Chem Res 49(9):4026–4030

    Article  CAS  Google Scholar 

  55. Pereira PAR, Teixeira MFS, Fatibello-Filho O, Dockal ER, Bonifacio VG, Marcolino-Junior LH (2013) Mater Sc eng C 33(7):4081–4085

    Article  Google Scholar 

  56. Rezaei B, Lotfi-Forushani H, Ensafi AA (2014) Mater Sc eng C 37:113–119

    Article  CAS  Google Scholar 

  57. Richter P, Toral MI, Munozvargas F (1994) Analyst 119(6):1371–1374

    Article  CAS  Google Scholar 

  58. Xi X, Ming L (2013) Asian J Chem 25(10):5315–5318

    CAS  Google Scholar 

  59. Laube N, Mohr B, Hesse A (2001) J Cryst Growth 233(1–2):367–374

    Article  CAS  Google Scholar 

  60. Parham H, Zargar B (2001) Talanta 55:255–262

    Article  CAS  Google Scholar 

  61. Bard AJ, L.R. F (2001) Electrochemical methods: fundamentals and applications, 2a ed. John Wiley & Sons, New York

    Google Scholar 

  62. Nicholson RS (1965) Anal Chem 37(11):1351–1355

    Article  CAS  Google Scholar 

  63. Lavagnini I, Antiochia R, Magno F (2004) Electroanalysis 16(6):505–506

    Article  CAS  Google Scholar 

  64. Liu E, Zhang X (2014) Anal Methods 6(21):8604–8612

    Article  CAS  Google Scholar 

  65. Assumpção MHMT, De Souza RFB, Rascio DC, Silva JCM, Calegaro ML, Gaubeur I, Paixão TRLC, Hammer P, Lanza MRV, Santos MC (2011) Carbon 49(8):2842–2851

    Article  Google Scholar 

  66. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. Wiley-VCH, New York

    Google Scholar 

  67. Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical Chemistry, 2a ed. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following Brazilian funding agencies, FAPESP (Proc. 2013/16770-0 and 2014/03019-7), CNPq (561071/2010-1), and CAPES, for financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando C. Vicentini.

Electronic supplementary material

ESM 1

(DOCX 529kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.P., Vicentini, F.C., Lourencao, B.C. et al. A new sensor architecture based on carbon Printex 6L to the electrochemical determination of ranitidine. J Solid State Electrochem 20, 2395–2402 (2016). https://doi.org/10.1007/s10008-016-3143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3143-5

Keywords

Navigation