Skip to main content
Log in

Voltammetric sensor based on magnetic particles modified composite electrode for determination of triamterene in biological sample

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Some diuretic substances are controlled and monitored by the World Anti-Doping Agency as prohibited substances for use by athletes, such as triamterene (TRT). Thus, this work describes a voltammetric method based on graphite-epoxy composite electrode modified by tosyl-functionalized magnetic particles (GECE/MPs-To) for determination of TRT diuretic in urine sample. The TRT presented an oxidation peak at +1.24 V at GECE/MPs-To with irreversible behavior. Controlled potential electrolysis of the TRT at +1.26 V indicated the two electrons are transferred during amine group oxidation and the main product was identified by LC-MS/MS. The anodic peak current is 25 % higher at the modified electrode, suggesting that TRT is adsorbed on the magnetic particles. Using optimized conditions by using multivariate optimization of the parameters inherent of the square wave voltammetry, a calibration curve was constructed with a linear relationship for TRT from 0.500 to 99.8 μmol L−1. The limits of detection and quantification were 1.47 and 4.91 × 10−7 mol L−1, respectively. The proposed method was applied to urine sample and validated by LC-MS/MS technique where the values found and compared between the two techniques showed no significant difference at 95 % confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang J, Park S-B, Yoon H-G, Huh Y-M, Haam S (2006) Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 324:185–190

    Article  CAS  Google Scholar 

  2. Hu FX, Neoh KG, Kang ET (2006) Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 27:5725–5733

    Article  CAS  Google Scholar 

  3. Ma Z, Liu H (2007) Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Part 5:1–10

    Article  CAS  Google Scholar 

  4. Luo Y-L, Fan L-H, Xu F, Chen Y-S, Zhang C-H, Wei Q-B (2010) Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics.  Mater Chem Phys 120:590–597

    Article  CAS  Google Scholar 

  5. Shahbazi F, Amani K (2014) Synthesis, characterization and heterogeneous catalytic activity of diamine-modified silica-coated magnetite-polyoxometalate nanoparticles as a novel magnetically-recoverable nanocatalyst. Catal Commun 55:57–64

    Article  CAS  Google Scholar 

  6. Shan Z, Li C, Zhang X, Oakes KD, Servos MR, Wu Q, Chen H, Wang X, Huang Q, Zhou Y, Yang W (2011) Temperature-dependent selective purification of plasmid DNA using magnetic nanoparticles in an RNase-free process. Anal Biochem 412:117–119

    Article  CAS  Google Scholar 

  7. Liu JW, Zhang Y, Chen D, Yang T, Chen ZP, Pan SY, Gu N (2009) Facile synthesis of high-magnetization γ-Fe2O3/alginate/silica microspheres for isolation of plasma DNA. Colloids Surf A: Physicochem Eng Aspects 341:33–39

    Article  CAS  Google Scholar 

  8. Garcia J, Zhang Y, Taylor H, Cespedes O, Webb ME, Zhou D (2011) Multilayer enzyme-coupled magnetic nanoparticles as efficient reusable biocatalysts and biosensors. Nanoscale 3:3721–3730

    Article  CAS  Google Scholar 

  9. Kong L, Lu X, Jin E, Jiang S, Bian X, Zhang W, Wang C (2009) Constructing magnetic polyaniline/metal hybrid nanostructures using polyaniline/Fe3O4 composite hollow spheres as supports. J Solid State Chem 182:2081–2087

    Article  CAS  Google Scholar 

  10. Heli H, Majdi S, Sattarahmady N, Parsaei A (2010) Electrocatalytic oxidation and sensitive detection of deferoxamine on nanoparticles of Fe2O3@NaCo[Fe(CN)6]-modified paste electrode. J Solid State Electrochem 14:1637–1647

    Article  CAS  Google Scholar 

  11. Alizadeh T, Jamshidi F (2015) Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J Solid State Electrochem 19:1053–1062

    Article  CAS  Google Scholar 

  12. Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au–multi-walled carbon nanotubes–chitosan. J Solid State Electrochem 16:857–867

    Article  CAS  Google Scholar 

  13. Yang S, Li G, Wang G, Deng D, Qu L (2015) A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine. J Solid State Electrochem. Doi:10.1007/s10008-015-2980-y

  14. Pailleret A, Hien NTL, Thanh DTM, Deslouis C (2007) Surface reactivity of polypyrrole/iron-oxide nanoparticles: electrochemical and CS-AFM investigations. J Solid State Electrochemi 11:1013–1021

    Article  CAS  Google Scholar 

  15. Lermo A, Fabiano S, Hernández S, Galve R, Marco M-P, Alegret S, Pividori MI (2009) Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Biosens Bioelectro 24:2057–2063

    Article  CAS  Google Scholar 

  16. Mani V, Wu T-Y, Chen S-M (2014) Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite. J Solid State Electrochem 18:1015–1023

    Article  CAS  Google Scholar 

  17. Petcharoena K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mat Sci Eng B 177:421–427

    Article  Google Scholar 

  18. Mahdaviana AR, Mirrahimib MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271

    Article  Google Scholar 

  19. Una B, Durmus Z, Kavas H, Baykal A, Toprak MS (2010) Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Mater Chem Phys 123:184–190

    Article  Google Scholar 

  20. Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ (2006) Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater 306:248–253

    Article  CAS  Google Scholar 

  21. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Article  CAS  Google Scholar 

  22. Asuha S, Suyala B, Siqintana X, Zhao S (2011) Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties. J Alloy Compd 509:2870–2873

    Article  CAS  Google Scholar 

  23. Laube T, Kergaravat SV, Fabiano SN, Hernández SR, Alegret S, Pividori MI (2011) Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients. Biosens Bioelectro 27:46–52

    Article  CAS  Google Scholar 

  24. Bagheri H, Afkhami A, Panahi Y, Khoshsafar H, Shirzadmehr A (2014) Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples. Mat Sci Eng C 37:264–270

    Article  CAS  Google Scholar 

  25. Yin H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 82:1193–1199

    Article  CAS  Google Scholar 

  26. Deventer K, Pozo OJ, Eenoo PV, Delbeke FT (2009) Qualitative detection of diuretics and acidic metabolites of other doping agents in human urine by high-performance liquid chromatography–tandem mass spectrometry: Comparison between liquid–liquid extraction and direct injection. J Chromatogr A 1216:5819–5827

    Article  CAS  Google Scholar 

  27. Goebel C, Trout GJ, Kazlauskas R (2004) Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Anal Chim Acta 502:65–74

    Article  CAS  Google Scholar 

  28. The World Anti-Doping Code: The 2014 prohibited list (2015). http://list.wadaama.org/wp-content/uploads/2013/11/2014-Prohibited-List-ENGLISH-FINAL.pdf. Accessed 25 Sept 2015

  29. Maher HM, Youssef RM, El-Kimary EI, Hassana EM, Barary MA (2012) Bioavailability study of triamterene and xipamide using urinary pharmacokinetic data following single oral dose of each drug or their combination. J Pharmaceut Biomed 61:78–85

    Article  CAS  Google Scholar 

  30. Tabrizi AB, Naini S, Parnian K, Mohammadi S, Zad FE, Anvarian SP, Abdollahi A (2014) Determination of triamterene in human plasma and urine after its cloud point extraction. Quim Nov. 37:1182–1187

  31. Sanchez FG, Diaz AN, Guerrero MML (2015) Time-Resolved Spectroscopy for Selective Determination of Fluorescent Diuretics. Spectrosc Lett 48:481–486

    Article  CAS  Google Scholar 

  32. Brunelli C, Bicchi C, Stilo AD, Salomone A, Vincenti M (2006) High-speed gas chromatography in doping control:Fast-GC and fast-GC/MS determination ofb-adrenoceptor ligands and diuretics. J Sep Sci 29:2765–2771

    Article  CAS  Google Scholar 

  33. Nezhadali A, Mojarrab M (2015) Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes. J Electroanal Chem 744:85–94

    Article  CAS  Google Scholar 

  34. Ensafi AA, Hajian R (2008) Determination of Losartan and Triamterene in Pharmaceutical Compounds and Urine Using Cathodic Adsorptive Stripping Voltammetry. Anal Sci 24:1449–1454

    Article  CAS  Google Scholar 

  35. Merás ID, Mansilla AE, López FS, Gómez MJR (2002) Determination of triamterene and leucovorin in biological fluids by UV derivative-spectrophotometry and partial least-squares (PLS-1) calibration. J Pharmaceut Biomed 27:81–90

    Article  Google Scholar 

  36. Lermo A, Zacco E, Barak J, Delwiche M, Campoy S, Barbé J, Alegret S, Pividori MI (2008) Towards Q-PCR of pathogenic bacteria with improved electrochemical double-tagged genosensing detection. Biosens Bioelectro 23:1805–1811

    Article  CAS  Google Scholar 

  37. Erdem A, Pividori MI, Lermo A, Bonanni A, Valle M, Alegret S (2006) Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes. Sensor Actuat B-Chem 114:591–598

    Article  CAS  Google Scholar 

  38. Murray GJ, Danaceau JP (2009) Simultaneous extraction and screening of diuretics, beta-blockers, selected stimulants and steroids in human urine by HPLC-MS/MS and UPLC-MS/MS. J Chromatogr B 877:3857–3864

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  40. Sartori ER, Takeda HH, Fatibello-Filho O (2011) Glassy Carbon Electrode Modified with Functionalized Carbon Nanotubes Within a Poly(allylamine hydrochloride) Film for the Voltammetric Determination of Sulfite in Foods. Electroanal 23:2526–2533

    Article  CAS  Google Scholar 

  41. Neto BB, Scarminio IS, Bruns RE (2010) Como fazer experimentos, fourth edn. Bookman, Brazil

    Google Scholar 

  42. Ferreira SLC, Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta 63:1061–1067

    Article  CAS  Google Scholar 

  43. Hudari FF, Duarte EH, Pereira AC, Dall’Antonia LH, Kubota LT, Tarley CRT (2013) Voltammetric method optimized by multi-response assays for the simultaneous measurements of uric acid and acetaminophen in urine in the presence of surfactant using MWCNT paste electrode. J Electroanal Chem 696:52–58

    Article  CAS  Google Scholar 

  44. Jesus RM, Silva LOB, Castro JT, Neto ADA, Jesus RM, Ferreira SLC (2013) Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry. Talanta 106:293–297

    Article  Google Scholar 

  45. Miller JC, Miller JN (1988) Statistics for analytical chemistry, 2nd edn. Ellis Horwood Limited, England

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), CAPES, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Fantinato Hudari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudari, F.F., da Silva, B.F., Pividori, M.I. et al. Voltammetric sensor based on magnetic particles modified composite electrode for determination of triamterene in biological sample. J Solid State Electrochem 20, 2491–2501 (2016). https://doi.org/10.1007/s10008-015-3078-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3078-2

Keywords

Navigation