Skip to main content
Log in

Electrochemical properties of exfoliated graphite affected by its two-step modification

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Exfoliated graphite (EG) was modified by a two-stage process consisting of electrochemical oxidation followed by the thermal treatment. Within the former one, the process of re-intercalation of H2SO4 into the EG by linear sweep voltammetry was carried out. Thus, obtained re-intercalated EG underwent heat treatment at 800 °C in order to synthesize re-exfoliated EG (re-EG). The electrochemical features of the re-EG were examined in the model process of phenol electrooxidation carried out by cyclic voltammetry technique in alkaline solution with and without phenol addition. Taking into account the anodic charges as a main criterion of electrochemical activity, it was found that the modification of EG caused over twofold improvement of its electrochemical activity. This behavior is related with the changes within the chemical composition of modified EG surface and on much smaller scale with the modification of its structure. The degree of electrochemical activity improvement depends on the conditions under which the processes of re-intercalation and re-exfoliation were performed. The results of Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis supported by the data of the Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) observations allow an understanding of the physicochemical properties of re-exfoliated EG and enhancement of its electrochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chung DDL (1987) J Mater Sci 22:4190

    Article  CAS  Google Scholar 

  2. Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi J, Kim JM, Yoo J (2009) Adv Mater 21:1

    Google Scholar 

  3. Bourelle E, Cloude-Montigny B, Metrot A (1998) Mol Cryst Liq Cryst 310:321

    Article  CAS  Google Scholar 

  4. Yakovlev AY, Finaenov AI, Zabud’kov SL, Yakovleva EV (2006) Russ J Appl Chem 79:1741

    Article  CAS  Google Scholar 

  5. Toyoda M, Inagaki M (2000) Carbon 38:199

    Article  CAS  Google Scholar 

  6. Zheng W, Wong S (2003) Compos Sci Technol 63:225

    Article  CAS  Google Scholar 

  7. Li W, Han C, Liu W, Zhang M, Tao K (2007) Catal Today 125:278

    Article  CAS  Google Scholar 

  8. Bhattacharya A, Hazra A, Chatterjee S, Sen P, Laha S, Basumallick I (2004) J Power Sources 136:208

    Article  CAS  Google Scholar 

  9. Mitra S, Sampath S Electrochem Solid-State Lett 7:A264

  10. Lueking AD, Pan L, Narayanan DL (2005) J Phys Chem B 109:12710

    Article  CAS  Google Scholar 

  11. Krawczyk P (2011) Chem Eng J 172:1096

    Article  CAS  Google Scholar 

  12. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) J Therm Anal Calorim 85:235

    Article  CAS  Google Scholar 

  13. Skowroński JM, Krawczyk P (2004) J Solid State Electrochem 8:442

    Article  Google Scholar 

  14. Ramesh P, Sampath S (2001) Analyst 126:1872

    Article  CAS  Google Scholar 

  15. Krawczyk P, Skowroński JM (2010) J Appl Electrochem 40:91

    Article  CAS  Google Scholar 

  16. Dhakate SR, Chauhan N, Sharma S, Tawale J, Singh S, Sahare PD, Mathur RB (2011) Carbon 49:1946

    Article  CAS  Google Scholar 

  17. Tanaike O, Yamada Y, Kodama M, Miyajima N (2012) J Phys Chem Solids 73:1420

    Article  CAS  Google Scholar 

  18. Gottrell M, Kirk DW (1992) J Electrochem Soc 139:2736

    Article  Google Scholar 

  19. Boudenne JL, Cerclier O, Galéa J, Bianco P (1998) J Electrochem Soc 145:2763

    Article  CAS  Google Scholar 

  20. Martinez-Huitle CA, Ferro S (2006) Chem Soc Rev 35:1324

    Article  CAS  Google Scholar 

  21. Skowroński JM, Krawczyk P (2007) J Solid State Electrochem 11:223

    Article  Google Scholar 

  22. Świątkowski A, Pakuła M, Biniak S, Walczyk M (2004) Carbon 42:3057

    Article  Google Scholar 

  23. Terzyk AP (2001) Colloids Surf A 177:23

    Article  CAS  Google Scholar 

  24. László K, Tombácz E, Josepovits K (2001) Carbon 39:1217

    Article  Google Scholar 

  25. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) Carbon 43:153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grant of the Poznan University of Technology No. 03/31/DSPB/0292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krawczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk, P., Gurzęda, B. Electrochemical properties of exfoliated graphite affected by its two-step modification. J Solid State Electrochem 20, 361–369 (2016). https://doi.org/10.1007/s10008-015-3051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3051-0

Keywords

Navigation