Skip to main content
Log in

Electrochemical characterization of MWCNT/Ni(OH)2 composites as cathode materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The hydrothermal method was used to synthesize multi-walled carbon nanotube/nickel hydroxide composites (MWCNT/Ni(OH)2). The structure and morphology of the prepared materials were characterized by X-ray diffraction and transmission electron microscopy. The electrochemical performance of cathodes prepared with multi-walled carbon nanotubes (MWCNT) loaded into the β-nickel hydroxide materials was investigated employing cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic measurements. It is shown that the cathode active material utilization increases for MWCNT/Ni(OH)2 obtained after 24 h of hydrothermal synthesis. These composites exhibit a fairly good electrochemical performance as cathode materials. Based on the results, this fact could be associated with the formation of a continuous conductive network structure in the hydroxide matrix. The analyses of impedance data, according to a physicochemical model, allow the improvement of a better understanding of the main structural and physicochemical parameters that control the electrochemical performance of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang W, Jiang W, Yu L, Zhongzhen F, Xia W, Yang M (2009) Int J Hydrog Energy 34:473–480

    Article  Google Scholar 

  2. Lv J, Tu JP, Zhang WK, Wu JB, Wu HM, Zhang B (2004) J Power Sources 132:282–287

    Article  Google Scholar 

  3. Snook Graeme A, Duffy Noel W, Pandolfo Anthony G (2007) J Power Sources 168:513–521

    Article  Google Scholar 

  4. Van der Ven A, Morgan D, Meng YS, Ceder G (2006) J Electrochem Soc 153(2):A210–A215

    Article  Google Scholar 

  5. Shukla AK, Venugopalan S, Hariprakash B (2001) J Power Sources 100:125–148

    Article  CAS  Google Scholar 

  6. Ren J, Zhou Z, Gao XP, Yan J (2006) Electrochim Acta 52:1120–1126

    Article  CAS  Google Scholar 

  7. Liu X, Yu L (2004) J Power Sources 128:326–330

    Article  CAS  Google Scholar 

  8. Wang X, Sebastian PJ, Millan A-C, Parkhutik PV, Gamboa SA (2005) J New Mat Electr Syst 8:101–108

    CAS  Google Scholar 

  9. Xiao-yan G, Deng J-c (2007) Mater Lett 61:621–625

    Article  Google Scholar 

  10. Wang X, Luo H, Parkhutik PV, Millan A-C, Matveeva E (2003) J Power Sources 115:153–160

    Article  Google Scholar 

  11. Bing L, Huatang Y, Yunshi Z, Zuoxiang Z, Deying S (1999) J Power Sources 79:277–280

    Article  CAS  Google Scholar 

  12. Liu B, Yuan H, Zhang Y (2004) Int J Hydrog Energy 29:453–458

    Article  CAS  Google Scholar 

  13. Dai J, Li SFY, Xiao TD, Wang DM, Reisner DE (2000) J Power Sources 89:40–45

    Article  CAS  Google Scholar 

  14. Wang X, Luo H, Yang H, Sebastian PJ, Gamboa SA (2004) Int J Hydrog Energy 29:967–972

    Article  CAS  Google Scholar 

  15. Wang X, Yan J, Yuan H, Zhou Z, Song D, Zhang Y, Zhu L (1998) J Power Sources 72:221–225

    Article  CAS  Google Scholar 

  16. Ortiz MG, Castro EB, Real SG (2014) Int J Hydrog Energy 39:6006–6012

    Article  CAS  Google Scholar 

  17. Ramesh TN, Jayashree RS, Kamath PV, Rodrigues S, Shukla AK (2002) J Power Sources 104:295–298

    Article  CAS  Google Scholar 

  18. Fukunaga H, Kishimi M, Igarashi N, Ozaki T, Sakai T (2005) J Electrochem Soc 152(1):A42–A46

    Article  CAS  Google Scholar 

  19. Begum SN, Muralidharan VS, Ahmed BC (2009) Int J Hydrog Energy 34:1548–1555

    Article  CAS  Google Scholar 

  20. Marcio V, Salvador RP, Córdoba de Torresi SI (2009) Ultrason Sonochem 16:35–40

    Article  Google Scholar 

  21. Ortiz MG, Real SG, Castro EB (2014) Int J Hydrog Energy 39:8661–8666

    Article  CAS  Google Scholar 

  22. Provazi K, Giz MJ, Dall’Antonia LH, Córdoba de Torresi SI (2001) J Power Sources 102:224–232

    Article  CAS  Google Scholar 

  23. Yuan A, Cheng S, Zhang J, Cao C (1998) J Power Sources 76:36–40

    Article  CAS  Google Scholar 

  24. Cheng S, Anbao Y, Hong L, Jianqing Z, Chunan C (1998) J Power Sources 76:215–217

    Article  CAS  Google Scholar 

  25. Krejčí I, Mrha J, Folkesson B, Larsson R (1987) J Power Sources 21:77–90

    Article  Google Scholar 

  26. Zhang WK, Xia XH, Huang H, Gan YP, Wu JB, Tu JP (2008) J Power Sources 184:646–651

    Article  CAS  Google Scholar 

  27. Sierczynska A, Lota K, Lota G (2010) J Power Sources 195:7511–7516

    Article  CAS  Google Scholar 

  28. Gooding JJ (2005) Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  29. Song QS, Aravindaraj GK, Sultana H, Chan SLI (2007) Electrochim Acta 53:1890–1896

    Article  CAS  Google Scholar 

  30. Jiao Q-Z, Tian Z-L, Zhao Y (2007) J Nanopart Res 9:519–522

    Article  CAS  Google Scholar 

  31. Yan D, Wang R, Zhang J, Liu Z (2004) J Phys Chem B 108:23:7531–7533

  32. Ortiz MG, Castro EB, Real SG (2012) Int J Hydrog Energy 37:10365–10370

    Article  CAS  Google Scholar 

  33. De Levie R (1967) In: Delahay P (ed) Advances in electrochemistry and electrochemistry engineering, vol 6. Interscience, NY, pp 329–361

    Google Scholar 

  34. Castro EB, Cuscueta DJ, Milocco RH, Ghilarducci AA, Salva HR (2010) Int J Hydrog Energy 35:5991–5998

    Article  CAS  Google Scholar 

  35. Ortiz M, Becker D, Garaventta G, Visintin A, Castro EB, Real SG (2011) Electrochim Acta 56:7946–7954

    Article  CAS  Google Scholar 

  36. Li J, Liu E-h, Li W, Meng X-y, Tan S-t (2009) J Alloys Comp 478:371–374

    Article  CAS  Google Scholar 

  37. Paxton B, Newman J (1997) J Electrochem Soc 144:3818–3831

    Article  CAS  Google Scholar 

  38. Zhang C, Su-Moon P (1987) J Electrochem Soc 134:2966–2970

    Article  CAS  Google Scholar 

  39. Mao Z, De Vidts P, White RE, Newman J (1994) J Electrochem Soc 141:54–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the following Argentina organizations: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad Tecnológica Nacional (UTN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Ortiz or S. G. Real.

Additional information

Castro E.B. passed away on February 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, M.G., Real, S.G. & Castro, E.B. Electrochemical characterization of MWCNT/Ni(OH)2 composites as cathode materials. J Solid State Electrochem 20, 1029–1036 (2016). https://doi.org/10.1007/s10008-015-3023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3023-4

Keywords

Navigation