Skip to main content
Log in

Theoretical model for AB5 alloy hydride formation: the electrochemical activation of the hydrogen diffusion process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper examines the hydrogen diffusion process during activation cycles in LaNi3.6Co0.7Mn0.4 − x Mo x Al0.3 alloys with x = 0; 0.1 and 0.25 in strong alkaline solutions. The effect of molybdenum substitution was analyzed by potential, composition, and temperature (E-c-T) and charge/discharge curves. Hysteresis values and the potential between charge/discharge curves have been used as parameters for efficiency loss. Further, electrochemical impedance spectroscopy was carried out in order to visualize the charge transfer and diffusion component during activation process. A mathematical approach is presented here based on the mechanism involved in the course of the hydriding reaction solving a spherical second Fick’s law. Thus, adsorbed hydrogen is considered to be transferred from the surface to inner sites, and the diffusion into the bulk of the alloy is demonstrated to be the slow route. Diffusion overpotentials and time constants for AB5 alloys were calculated as a function of the number of hydrogenation cycles. These results show that the molybdenum content has positive effects in kinetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bareto L, Makihira A, Riahi K (2003) Int J Hydrogen Energy 28:267–284

    Article  Google Scholar 

  2. Pyun SI, Han JN (2001) J Solid State Electrochem 5:466–472

    Article  CAS  Google Scholar 

  3. Shaltiel D (1978) J Less Common Met 62:407–416

    Article  CAS  Google Scholar 

  4. Park SJ, Lee SY (2010) Int J Hydrogen Energy 35:13048–13054

    Article  CAS  Google Scholar 

  5. Yang H, Chen Y, Tao M, Wu C, Shao J, Deng G (2010) Electrochim Acta 55:648–655

    Article  CAS  Google Scholar 

  6. Iwakura C, Senoh H, Morimoto K, Hara Y, Inoue H (2002) Electrochemistry 70:2–7

    CAS  Google Scholar 

  7. Díaz V, Teliz E, Ruiz F, Martínez PS, Faccio R, Zinola F (2013) Int J Hydrogen Energy 38:12811–12816

    Article  Google Scholar 

  8. Schiesser WE (1991) The numerical methods of lines: integration of partial differential equations. Academic, San Diego

    Google Scholar 

  9. Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems in differential-algebraic equations. North Holland, New York

  10. Huang A, Perng TP (1998) In: Saetre TO (ed) Hydrogen power: theoretical and engineering solutions. Kluwer Academic Publishers, Norway

    Google Scholar 

  11. Lundin CE, Lynch FE (1977) Proceedings of International Symposium on Hydrides for Energy Storage, Geilo, Norway

  12. Osumi Y, Suzuki H, Kato A, Nakane M (1982) J Less Common Met 84:99–106

    Article  CAS  Google Scholar 

  13. Mungole MN, Balasubramaniam R, Rai KN (1995) Int J Hydrogen Energy 20:151–157

    Article  CAS  Google Scholar 

  14. Baddour-Hadjean R, Pereira Ramos J, Latrche M, Percheron- Guegan A (2002) In: Pereira JC, Ramos JP, Momchilov A (eds) New trends in intercalation compounds for energy storage. Kluwer Academic Publishers, Bulgaria

    Google Scholar 

  15. Qian S, Northwood DO (1988) Int J Hydrogen Energy 13:25–35

    Article  CAS  Google Scholar 

  16. Tanaka S (1983) J Less Common Metals 89:169–172

    Article  CAS  Google Scholar 

  17. Flanagan TB, Oates VA (1988) In: Schlapbach FL (ed) Hydrogen in intermetallic compound. Springer, Berlín

    Google Scholar 

  18. Flanagan TB, Clewley JD, Kuji T, Park CN, Everett DH (1986) J Chem Soc Faraday Trans 1: Phys Chem in Cond Phases 82:2589–2604

    Article  CAS  Google Scholar 

  19. Bala H, Giza K, Kukula I (2010) J Appl Electrochem 40:791–797

    Article  CAS  Google Scholar 

  20. Wang CS, Wang XH, Lei YQ, Chen CP, Wang QD (1996) Int J Hydrogen Energy 21:471–478

    Article  CAS  Google Scholar 

  21. Chen J, Dou SX, Bradhurst DH, Liu HK (1998) Int J Hydrogen Energy 23:177–182

    Article  CAS  Google Scholar 

  22. Wu B, White RE (2001) J Power Sources 92:177–186

    Article  CAS  Google Scholar 

  23. Khaldi C, Boussami S, Tliha M, Azizi S, Fenineche N, El-Kedim O, Mathlouthi H, Lamloumi J (2013) J Alloys Comp 574:59–66

    Article  CAS  Google Scholar 

  24. Schneider PJ (1955) In: Lee JF, Cambel AB (eds) Conduction heat transfer. Addison-Wesley, Cambridge, Oxford

    Google Scholar 

  25. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Fabricio Ruiz and Eng. Sebastian Cammardella for the technical support. The authors acknowledge ANII and CSIC projects for the financial support. Dr. Zinola is a researcher at PEDECIBA/United Nations and a member of the Electrochemical Society. Dra. Díaz is a researcher at PEDECIBA/United Nations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teliz, E., Díaz, V. & Zinola, C.F. Theoretical model for AB5 alloy hydride formation: the electrochemical activation of the hydrogen diffusion process. J Solid State Electrochem 20, 115–122 (2016). https://doi.org/10.1007/s10008-015-3011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3011-8

Keywords

Navigation