Skip to main content
Log in

Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to improve the pseudocapacitance properties and cycle stability of polyaniline (PANI), reduced graphene oxide–silica (rGOS) is used to modify the polyaniline material. Ternary composites of reduced graphene oxide–silica–polyaniline (rGOSP) are prepared by chemical polymerization of aniline using ammonium persulfate oxidant with various amounts of rGOS in aq. 1 M H2SO4 solution. Morphology analysis of rGOSP composite revealed that the nano fibers form of polyaniline is intercalated in the graphene layers and also covered the rGOS. Symmetric supercapacitor cell is fabricated in CR2032 coin cell with rGOSP composite as electrode and its electrochemical performance is evaluated from cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. rGOSP composite yielded a higher capacitance and lower ESR value compared to that of its individual components, PANI and rGOS. The energy density of the composite is found to be 10 W h kg−1 at a power density of 2310 W kg−1. Furthermore, over 75.2 % of the original capacitance is retained after 6000 galvanostatic charge–discharge cycles at 0.8 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brownson D, Banks C (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Cai W, Li X, Suk J, Potts J, Ruoff R (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  3. Li C, Shi G (2011) Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochim Acta 56:10737–10743

    Article  CAS  Google Scholar 

  4. Kou L, Gao C (2011) Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 3:519–528

    Article  CAS  Google Scholar 

  5. Salinas-Torres D, Montilla F, Huerta F, Morallon E (2011) All electrochemical synthesis of polyaniline/silica sol–gel materials. Electrochim Acta 56:3620–3625

    Article  CAS  Google Scholar 

  6. Liu XX, Li YB, Bian LJ, Dou YQ, Huo YQ (2008) Electrodeposition of hybrid film of polyaniline/silica and its pseudocapacitive properties. J Solid State Electrochem 12:909–912

    Article  CAS  Google Scholar 

  7. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  8. Du X, Wang C, Li T, Chen M (2009) Studies on the performances of silica aerogel electrodes for the application of supercapacitor. Ionics 15:561–565

    Article  CAS  Google Scholar 

  9. Feng X, Yan Z, Chen N, Zhang Y, Liu X, Ma Y, Yang X, Hou W (2013) Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J Chem 37:2203–2209

    Article  CAS  Google Scholar 

  10. Chen GL, Shau SM, Juang TY, Lee RH, Chen CP, Suen SY, Jeng RJ (2011) Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation. Langmuir 27:14563–14569

    Article  CAS  Google Scholar 

  11. Park S, An J, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  12. Sydulu S, Palaniappan S, Srinivas P (2013) Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor. Electrochim Acta 95:251–259

    Article  Google Scholar 

  13. Zheng Z, Du Y, Feng Q, Wang Z, Wang C (2012) Facile method to prepare Pd/graphene–polyaniline nanocomposite and used as new electrode material for electrochemical sensing. J Mol Catal A: Chem 353:80–86

    Article  Google Scholar 

  14. Ciric-Marjanovic G, Dragicevic L, Milojevic M, Mojovic M, Mentus S, Dojcinovic B, Marjanovic B, Stejskal J (2009) Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. J Phys Chem B 113:7116–7127

    Article  CAS  Google Scholar 

  15. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  16. Huang Y, Lin C (2012) Polyaniline-intercalated graphene oxide sheet and its transition to a nanotube through a self-curling process. Polymer 53:1079–1085

    Article  CAS  Google Scholar 

  17. Guardia L, Suárez-García F, Paredes JI, Solís-Fernández P, Rozada R, Fernández-Merino MJ, Martínez-Alonso A, Tascón JMD (2012) Synthesis and characterization of graphene–mesoporous silica nanoparticle hybrids. Microporous Mesoporous Mater 160:18–24

    Article  CAS  Google Scholar 

  18. Kim KS, Park SJ (2011) Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochim Acta 56:1629–1635

    Article  CAS  Google Scholar 

  19. Zhou HH, Chen H, Luo SL, Lu GW, Wei WZ, Kuang YF (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9:574–580

    Article  CAS  Google Scholar 

  20. Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248

    Article  CAS  Google Scholar 

  21. Male U, Singu BS, Srinivasan P (2015) Aqueous, interfacial, and electrochemical polymerization pathways of aniline with thiophene: Nano size materials for supercapacitor. J Appl Polym Sci 132:42013

    Google Scholar 

  22. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  CAS  Google Scholar 

  23. Wang YT, Lu AH, Zhang HL, Li WC (2011) Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115:5413–5421

    Article  CAS  Google Scholar 

  24. Hu C, Li W, Lin J (2004) The capacitive characteristics of supercapacitors consisting of activated carbon fabric–polyaniline composites in NaNO3. J Power Sources 137:152–157

    Article  CAS  Google Scholar 

  25. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  26. Singu B, Male U, Srinivasan P, Pabba S (2014) Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance. J Solid State Electrochem 18:1995–2003

    Article  CAS  Google Scholar 

  27. Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH (1999) Study of electrochemical capacitors utilizing carbon nanotube electrodes. J Power Sources 84:126–129

    Article  CAS  Google Scholar 

  28. Metikos-Hukovic M, Omanovic S (1998) Thin indium oxide film formation and growth: impedance spectroscopy and cyclic voltammetry investigations. J Electroanal Chem 455:181–189

    Article  CAS  Google Scholar 

  29. Girija TC, Sangaranarayanan MV (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J Power Sources 156:705–711

    Article  CAS  Google Scholar 

  30. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  31. Guan H, Fan LZ, Zhang HC, Qu XH (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank The Department of Science & Technology, New Delhi, for funding under the project (DST/TSG/PT/2011/179-G). We are thankful to Dr. M. Lakshmi Kantam, Director, for her support and encouragement. UM is thankful to CSIR, India, and SU is thankful to UGC, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Male, U., Uppugalla, S. & Srinivasan, P. Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor. J Solid State Electrochem 19, 3381–3388 (2015). https://doi.org/10.1007/s10008-015-2978-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2978-5

Keywords

Navigation