Skip to main content
Log in

Efficient syngas production from methane reforming in solid oxide electrolyser with LSCM cathode loaded with Ni–Cu catalysts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work studies electrochemical reforming of CH4/CO2 (1:1) in an oxide-ion-conducting solid oxide electrolyzer with perovskite cathode La0.75Sr0.25Cr0.5Mn0.5O3 − δ (LSCM). The Ni, Cu, and bimetallic Ni–Cu nanocatalysts are, respectively, loaded to LSCM electrode to enhance electrochemical biogas reforming performances. The synergetic effect of Ni and Cu produces excellent cathode activity with Faraday efficiency considerably improved by 20 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bhavani AG, Kim WY, Lee JS (2013) ACS Catal 3:1537–1544

    Article  CAS  Google Scholar 

  2. Patiño J, Gutiérrez MC, Carriazo D, Ania CO, Parra JB, Ferrer ML, del Monte F (2011) Energy Environ Sci 4:862–865

    Article  Google Scholar 

  3. Qian LP, Cai WJ, Zhang L, Ye L, Li J, Tang M, Yue B, He HY (2015) Appl Catal B Environ 164:168–175

    Article  CAS  Google Scholar 

  4. Tang P, Zhu QJ, Wu ZX, Ma D (2014) Energy Environ Sci 7:2580–2591

    Article  CAS  Google Scholar 

  5. Tomishige K, Miyazawa T, Asadullah M, Ito S, Kunimori K (2003) Green Chem 5:399–403

    Article  CAS  Google Scholar 

  6. Tahir M, Amin NAS (2015) Appl Catal B Environ 162:98–109

    Article  CAS  Google Scholar 

  7. Caravaca A, Lucas-Consuegra A, Ferreira VJ, Figueiredo JL, Faria JL, Valverde JL, Dorado F (2013) Appl Catal B Environ 142–143:298–306

    Article  Google Scholar 

  8. Sellers H, Spiteri RJ, Perrone M (2009) J Phys Chem C 113:2340–2346

    Article  CAS  Google Scholar 

  9. Qian LP, Ren Y, Yu H, Wang Y, Yue B, He HY (2011) Appl Catal A Gen 401:114–118

    Article  CAS  Google Scholar 

  10. Zhang L, Ren YH, Yue B, He HY (2012) Chem Commun 48:2370–2384

    Article  CAS  Google Scholar 

  11. Bradford MCJ, Vannice MA (1999) J Catal 183:69–75

    Article  CAS  Google Scholar 

  12. Tsekouras G, Neagu D, Irvine JTS (2013) Energy Environ Sci 6:256–266

    Article  CAS  Google Scholar 

  13. Ni M, Leung MKH, Leung DYC (2008) Int J Hydrog Energy 33:2337–2354

    Article  CAS  Google Scholar 

  14. Liu MY, Yu B, Xu JM, Chen J (2008) J Power Sources 177:493–499

    Article  CAS  Google Scholar 

  15. Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2008) J Mater Chem 18:2331–2340

    Article  CAS  Google Scholar 

  16. Stoots CM, O’Brien JE, Condie KG, Hartvigsen JJ (2010) Int J Hydrog Energy 35:4861–4870

    Article  CAS  Google Scholar 

  17. Xie K, Zhang YQ, Meng GY, Irvine JTS (2011) Energy Environ Sci 4:2218–2222

    Article  CAS  Google Scholar 

  18. Eguchi K, Hatagishi T, Arai H (1996) Solid State Ionics 86:1245–1249

    Article  Google Scholar 

  19. Shin EC, Ahn PA, Seo HH, Jo JM, Kim SD, Woo SK, Yu JH, Mizusaki J, Lee JS (2013) Solid State Ionics 232:80–96

    Article  CAS  Google Scholar 

  20. Chen M, Liu YL, Bentzen JJ, Zhang W, Sun XF, Hauch A, Tao YK, Bowen JR, Hendriksen PV (2013) J Electrochem Soc 160:883–891

    Article  Google Scholar 

  21. Kee RJ, Zhu H, Goodwin DG (2005) Proc Combust Inst 30:2379–2404

    Article  Google Scholar 

  22. Hecht ES, Gupta GK, Zhu H, Dean AM, Kee RJ, Maier L (2005) Appl Cata A Gen 295:40–51

    Article  CAS  Google Scholar 

  23. He H, Hill JM (2007) Appl Catal A Gen 317:284–292

    Article  CAS  Google Scholar 

  24. Koh JH, Yoo YS, Park JW, Lim HC (2002) Solid State Ionics 149:157–166

    Article  CAS  Google Scholar 

  25. Pihlatie M, Kaiser A, Mogensen M (2009) Solid State Ionics 180:1100–1112

    Article  CAS  Google Scholar 

  26. Tao SW, Irvine JTS (2003) Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  27. Ruckenstein E, Hu YH (1995) Appl Cata A Gen 133:149–161

    Article  CAS  Google Scholar 

  28. Cheng ZX, Wu QL, Li JL, Zhu QM (1996) Catal Today 30:147–155

    Article  CAS  Google Scholar 

  29. Wang SB, Lu GQM (1998) Appl Catal B Environ 16:269–277

    Article  CAS  Google Scholar 

  30. Murray EP, Tsai T, Barnett SA (1999) Nature 400:649–651

    Article  CAS  Google Scholar 

  31. Cabezas MD, Lamas DG, Bellino MG, Fuentes RO, de Reca NE W, Larrondo SA (2009) Electrochem Solid-St Lett 12:34–37

    Article  Google Scholar 

  32. Park EW, Moon H, Park MS, Hyun SH (2009) Int J Hydrog Energy 34:5537–5545

    Article  CAS  Google Scholar 

  33. Sfeir J, Buffat PA, Möckli P, Xanthopoulos N, Vasquez R, Mathieu HJ, Herle JV, Thampi KR (2001) J Catal 202:229–244

    Article  CAS  Google Scholar 

  34. Kim G, Correb G, Irvine JTS, Vohsa JM, Gorte RJ (2008) Electrochem Solid-St Lett 11:16–19

    Article  Google Scholar 

  35. Tao SW, Irvine JTS, Plint SM (2006) J Phys Chem B 110:21771–21776

    Article  CAS  Google Scholar 

  36. Matayoshi S, Hirata Y, Sameshima S, Matsunaga N, Terasawa Y (2009) J Ceram Soc Jpn 117:1147–1152

    Article  CAS  Google Scholar 

  37. Huang B, Ye XF, Wang SR, Nie HW, Shi J, Hu Q, Qian JQ, Sun XF, Wen TL (2006) J Power Sources 162:1172–1181

    Article  CAS  Google Scholar 

  38. Suga Y, Yoshinaga R, Matsunaga N, Hirata Y, Sameshima S (2012) Ceram Int 38:6713–6721

    Article  CAS  Google Scholar 

  39. Park S, Craciun R, Vohs JM, Corte RJ (1999) J Electrochem Soc 146:3603–3605

    Article  CAS  Google Scholar 

  40. Hua B, Li M, Zhang WY, Pu J, Chi B, Jian L (2014) J Electrochem Soc 161:569–575

    Article  Google Scholar 

  41. Sen A (1998) Acc Chem Res 31:550–557

    Article  CAS  Google Scholar 

  42. Ruan C, Xie K, Yang LM, Ding B, Wu YC (2014) Int J Hydrog Energy 39:10338–10348

    Article  CAS  Google Scholar 

  43. Li YX, Gan Y, Li SS, Wang Y, Xiang HF, Xie K (2012) Phys Chem Chem Phys 14:15547–15553

    Article  CAS  Google Scholar 

  44. Tao SW, Irvine JTS (2006) Chem Mater 18:5453–5460

    Article  CAS  Google Scholar 

  45. Li YX, Wang Y, Doherty W, Xie K, Wu YC (2013) ACS Appl Mater Interfaces 5:8553–8562

    Article  CAS  Google Scholar 

  46. Wang SB, Lu GQM (1998) Appl Catal B Environ 16:69–277

    Article  CAS  Google Scholar 

  47. López P, Mondragón-Galicia G, Espinosa-Pesqueira ME, Mendoza-Anaya D, Fernández ME, Gómez-Cortés A, Bonifacio J, Martı’nez-Barrera G, Pérez-Hernández R (2012) Int J Hydrog Energy 37:9018–9027

    Article  Google Scholar 

  48. Wu GJ, Xie K, Wu YC, Yao WT, Zhou J (2013) J Power Sources 232:187–192

    Article  CAS  Google Scholar 

  49. Gan Y, Qin QQ, Chen SG, Wang Y, Dong DH, Xie K, Wu YC (2014) J Power Sources 245:245–255

    Article  CAS  Google Scholar 

  50. Li HX, Sun GH, Xie K, Qi WT, Qin QQ, Wei HS, Wu YC (2014) Int J Hydrog Energy Energy 39:20888–20897

    Article  CAS  Google Scholar 

  51. Qi WT, Gan Y, Yin D, Li ZY, Wu GJ, Xie K, Wu YC (2014) J Mater Chem A 2:6904–6915

    Article  CAS  Google Scholar 

  52. Chen SG, Xie K, Dong DH, Li HX, Qin QQ, Zhang Y, Wu YC (2015) J Power Sources 274:718–729

    Article  CAS  Google Scholar 

  53. Danilovic N, Vincent A, Luo JL, Chuang KT, Hui R, Sanger AR (2012) Chem Mater 22:957–965

    Article  Google Scholar 

  54. Li SS, Li YX, Gan Y, Xie K, Meng GY (2012) J Power Sources 245:244–255

    Google Scholar 

  55. Meshkani F, Rezaei M (2011) Catal Commun 12:1046–1050

    Article  CAS  Google Scholar 

  56. Wisniewski M, Bore’ave A, Ge’lin P (2005) Catal Commun 6:596–600

    Article  CAS  Google Scholar 

  57. Timmermann H, Fouquet D, Weber A, Ivers-Tiffée E, Hennings U, Reimert R (2006) Fuel Cells 6:307–313

    Article  CAS  Google Scholar 

  58. Ando M, Hirata Y, Sameshima S, Matsunaga N (2011) J Ceram Soc Jpn 119:794–800

    Article  CAS  Google Scholar 

  59. Assabumrungrat S, Laosiripojana N, Piroonlerkgul P (2006) J Power Sources 159:1274–1282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China no. 21303037 and the Ministry of Education of Overseas Returnees Fund no. 20131792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Xie.

Additional information

Qingqing Qin and Cong Ruan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Ruan, C., Ye, L. et al. Efficient syngas production from methane reforming in solid oxide electrolyser with LSCM cathode loaded with Ni–Cu catalysts. J Solid State Electrochem 19, 3389–3399 (2015). https://doi.org/10.1007/s10008-015-2966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2966-9

Keywords

Navigation