Skip to main content
Log in

Optical and photovoltaic properties of temperature-dependent synthesis of ZnO nanobelts, nanoplates, and nanorods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This study focused on the effect of different reaction temperature on the morphology of zinc oxide. The temperature plays a significant role for the growth along different planes and axis. We synthesized ZnO hydrothermally at different temperature (60, 100, 140, and 180 °C). The synthesized ZnO nanopowders were characterized by UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The absorption spectrum of ZnO nanoparticles was observed with excitonic peaks in the range 372 to 376 nm. The XRD patterns of the particles reveal the formation of hexagonal phase for ZnO with high degree of crystallinity. The FESEM images of ZnO powder shows the formation of nanobelts, nanoplates, and nanorods. As temperature was increased, the morphology of ZnO nanostructures changed from nanobelts to nanorods. The synthesized ZnO powders were successfully employed as electrode material in dye-sensitized solar cells to evaluate the photovoltaic performances of synthesized ZnO nanobelts, nanoplates, and nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  CAS  Google Scholar 

  3. Duong TT, Choi HJ, He QJ, Le AT, Yoon SG (2013) Review: enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J Alloys Compd 561:206–210

    Article  CAS  Google Scholar 

  4. Xu F, Zhang X, Wu Y, Wu D, Gao Z, Jiang K (2013) Review: facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells. J Alloys Compd 574:227–232

    Article  CAS  Google Scholar 

  5. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. J Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  6. Kalyansundaram K, Grätzel M (1998) Applications of functionalized transition metal complex in photonic and optoelectronic devices. Coord Chem Rev 177:347–414

    Article  Google Scholar 

  7. Kong FT, Dai SY, Wang KJ (2007) Review of recent progress in dye-sensitized solar cells. J Adv Opto Electron 2007:1–13

    Google Scholar 

  8. Gratzel M (2003) Review: dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153

    Article  CAS  Google Scholar 

  9. Polo AS, Itokazu MK, Iha NYM (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248:1343–1361

    Article  CAS  Google Scholar 

  10. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. J Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  11. Katoh R, Furube A, Kasuya M, Fuke N, Koide N, Han L (2007) Photoinduced electron injection in black dye sensitized nanocrystalline TiO2 films. J Mater Chem 17:3190–3196

    Article  CAS  Google Scholar 

  12. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  13. Xu F, Sun L (2011) Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ Sci 4:818–841

    Article  CAS  Google Scholar 

  14. Hu X, Heng B, Chen X, Wang B, Sun D, Sun Y, Zhou W, Tang Y (2012) Ultralong porous ZnO nanobelt arrays grown directly on fluorine-doped SnO2 substrate for dye-sensitized solar cells. J Power Sources 217:120–127

    Article  CAS  Google Scholar 

  15. Sakai N, Miyasaka T, Murakami TN (2013) Efficiency enhancement of ZnO-based dye-sensitized solar cells by low-temperature TiCl4 treatment and dye optimization. J Phys Chem C 117:10949–10956

    Article  CAS  Google Scholar 

  16. Liu X, Wu X, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147

    Article  CAS  Google Scholar 

  17. Redmond G, Fitzmaurice D, Graetzel M (1994) Visible light sensitization by cis-Bis (thiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol–gel techniques. Chem Mater 6:686–691

    Article  CAS  Google Scholar 

  18. Rensmo H, Keis K, Lindstrom H, Sodergren S, Solbrand A, Hagfeldt A, Lindquist SE (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101:2598–2601

    Article  CAS  Google Scholar 

  19. Chou TP, Zhang Q, Fryxell GE, Cao G (2007) Hierarchically structured ZnO film for dye sensitized sol. Cells with enhanced energy conversion efficiency. Adv Mater 19:2588–2592

    Article  CAS  Google Scholar 

  20. Meng XQ, Zhao DX, Zhang JY, Shen DZ, Lu YM, Liu YC, Fan XW (2005) Growth temperature controlled shape variety of ZnO nanowires. Chem Phys Lett 407:91–94

    Article  CAS  Google Scholar 

  21. Umar A, Lee S, Lee YS, Nahm KS, Hahn YB (2005) Star-shaped ZnO nanostructures on silicon by cyclic feeding chemical vapor deposition. J Cryst Growth 277:479–484

    Article  CAS  Google Scholar 

  22. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  Google Scholar 

  23. Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS (2007) Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci 253:7622–7626

    Article  CAS  Google Scholar 

  24. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648

    Article  CAS  Google Scholar 

  25. Wahab R, Ansari SG, Kim YS, Khang G, Shin HS (2008) Review of the effect of hydroxylamine hydrochloride on the floral decoration of zinc oxide synthesized by solution method. J Appl Surf Sci 254:2037–2042

    Article  CAS  Google Scholar 

  26. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  27. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol–gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833

    Article  CAS  Google Scholar 

  28. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. J Chem Mater 14:4172–4177

    Article  CAS  Google Scholar 

  29. Nyffenegger RM, Craft B, Shaaban M, Gorer S, Erley G, Penner RM (1998) A hybrid electrochemical/ chemical synthesis of zinc oxide nanoparticles and optically intrinsic thin films. J Chem Mater 10:1120–1129

    Article  CAS  Google Scholar 

  30. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Deigo

    Google Scholar 

  31. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858

    Article  CAS  Google Scholar 

  32. Zhang AQ, Zhang L, Sui L, Qian DJ, Chen M (2013) Morphology-controllable synthesis of ZnO nano-/microstructures by a solvothermal process in ethanol solution. Cryst Res Technol 48:947–955

    Article  CAS  Google Scholar 

  33. Khoza PB, Moloto MJ, Sikhwivhilu LM (2012) The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave. J Nanotechnol 2012:195106–195111

    Article  Google Scholar 

  34. Chauhan R, Kumar A, Umarji GG, Mulik UP, Amalnerkar DP (2015) Comparison of optical and photovoltaic properties of ZnO chemically synthesized by using different hydrolyzing agents. J Solid State Electrochem 19:161–168

    Article  CAS  Google Scholar 

  35. Yang L, Ma Q, Cai Y, Huang YM (2014) Enhanced photovoltaic performance of dye sensitized solar cells using one dimensional ZnO nanorod decorated porous TiO2 film electrode. Appl Surf Sci 292:297–300

    Article  CAS  Google Scholar 

  36. Wang G, Zhu X, Yu J (2015) Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. J Power Sources 278:344–351

    Article  CAS  Google Scholar 

  37. Fan J, Liu S, Yu J (2012) Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem 22:17027–17036

    Article  CAS  Google Scholar 

  38. Wang Q, Moser JE, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  39. Georg HA (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466

    Article  Google Scholar 

  40. Lee KM, Hu CW, Chen HW, Ho KC (2008) Incorporating carbon nanotubes in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol Energy Mater Sol Cells 92:1628–1633

    Article  CAS  Google Scholar 

  41. Yanagida S, Yu YH, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. J Acc Chem Res 42:1827–1838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Department of Science and Technology and INSA, New Delhi, for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellabati, N.V., Waghadkar, Y.B., Roy, A. et al. Optical and photovoltaic properties of temperature-dependent synthesis of ZnO nanobelts, nanoplates, and nanorods. J Solid State Electrochem 19, 2413–2420 (2015). https://doi.org/10.1007/s10008-015-2890-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2890-z

Keywords

Navigation