Skip to main content
Log in

The investigation of water vapor on the Li–O2 battery using a solid-state air cathode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A lithium (Li)–oxygen (O2) battery based on an inorganic solid-state air cathode was fabricated, and the influence of water vapor (key component in the air) on the electrochemical behavior of the proposed Li–O2 battery was deeply investigated. Excluding the negative influence of the corrosion of Li anode that existed in organic-based electrolyte Li–O2 battery when operated in wet environment, our results showed that water vapor has a positive effect on the discharge and cycling performances of the Li–O2 battery using a solid-state air cathode. The discharge capacity reached 11734 mA h g−1 (7.8 mA h cm−2) in wet O2, which was not markedly different with that in dry O2 (11956 mA h g−1 (8.0 mA h cm−2)). However, the discharge voltage in wet O2 was about 110 mV higher than that in dry O2. Although the formation of LiOH increased the charge overpotential, the formed LiOH in turn minimized the decomposition of carbon to form Li2CO3, and enhanced the cycling performance to a certain extent. In addition, we showed that the polarization involved by water vapor could also be largely decreased by slightly increasing the operating temperature; the charge voltage plateau decreased from 4.04 to 3.3 V when the temperature increased from 25 to 50 °C. These results suggest that the Li–O2 battery using a solid-state air cathode is promising for practical application, especially in wet environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  2. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) Nat Chem 4:579–585

    Article  CAS  Google Scholar 

  3. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  4. Lim HD, Park KY, Song H, Jang EY, Gwon H, Kim J, Kim YH, Lima MD, Robles RO, Lepró X, Baughman RH, Kang K (2013) Adv Mater 25:1348–1352

    Article  CAS  Google Scholar 

  5. Li Y, Guo K, Li J, Dong X, Yuan T, Li X, Yang H (2014) ACS Appl Mater Interfaces 6:20949–20957

    Article  CAS  Google Scholar 

  6. Wang Y, Zheng D, Yang X-Q, Qu D (2011) Energy Environ Sci 4:3697–3702

    Article  CAS  Google Scholar 

  7. Elia GA, Hassoun J, Kwak W-J, Sun Y-K, Scrosati B, Mueller F, Bresser D, Passerini S, Oberhumer P, Tsiouvaras N, Reiter J (2014) Nano Lett 14:6572–6577

    Article  CAS  Google Scholar 

  8. Jung KN, Lee JI, Jung JH, Shin KH, Lee JW (2014) Chem Commun 50:5458–5461

    Article  CAS  Google Scholar 

  9. Yang Y, Liu W, Wang Y, Wang X, Xiao L, Lu J, Zhuang L (2014) Phys Chem Chem Phys 16:20618–20623

    Article  CAS  Google Scholar 

  10. Zhang SS, Xu K, Read J (2011) J Power Sources 196:3906–3910

    Article  CAS  Google Scholar 

  11. Zhu D, Zhang L, Song M, Wang X, Chen Y (2013) Chem Commun 49:9573–9575

    Article  CAS  Google Scholar 

  12. Yang XH, Xia YY (2010) J Solid State Electr 14:109–114

    Article  CAS  Google Scholar 

  13. Kumar B, Kumar J (2010) J Electrochem Soc 157:A611–A616

    Article  CAS  Google Scholar 

  14. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159:R1–R30

    Article  CAS  Google Scholar 

  15. Zhang J, Xu W, Liu W (2010) J Power Sources 195:7438–7444

    Article  CAS  Google Scholar 

  16. Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) Electrochem Solid-State Lett 15:A45–A48

    Article  CAS  Google Scholar 

  17. Cho MH, Trottie J, Gagnon C, Hovington P, Clément D, Vijh A, Kim CS, Guerfi A, Black R, Nazar L, Zaghib K (2014) J Power Sources 268:565–574

    Article  CAS  Google Scholar 

  18. Guo Z, Dong X, Yuan S, Wang Y, Xia Y (2014) J Power Sources 264:1–7

    Article  CAS  Google Scholar 

  19. Zhang J, Xu W, Li X, Liu W (2010) J Electrochem Soc 157:A940–A946

    Article  CAS  Google Scholar 

  20. Crowther O, Keeny D, Moureau DM, Meyer B, Salomon M, Hendrickson M (2012) J Power Sources 202:347–351

    Article  CAS  Google Scholar 

  21. Crowther O, Salomon M (2012) Membranes 2:216–227

    Article  CAS  Google Scholar 

  22. Zhang JG, Wang D, Xu W, Xiao J, Williford RE (2010) J Power Sources 195:4332–4337

    Article  CAS  Google Scholar 

  23. Visco SJ, Katz BD, Nimon YS, Dejonghe LC (2007) US Patent 7282295

  24. Kitaura H, Zhou H (2012) Energy Environ Sci 5:9077–9084

    Article  CAS  Google Scholar 

  25. Zhang T, Zhou H (2013) Nat Commun 4:1817–1824

    Article  Google Scholar 

  26. Wang X, Zhu D, Song M, Cai S, Zhang L, Chen Y (2014) ACS Appl Mater Interfaces 6:11204–11210

    Article  CAS  Google Scholar 

  27. Kichambare P, Rodrigues S (2013) Energy Technol 1:209–211

    Article  CAS  Google Scholar 

  28. Kichambare P, Rodrigues S, Kumar J (2012) ACS Appl Mater Interfaces 4:49–52

    Article  CAS  Google Scholar 

  29. Kichambare P, Kumar J, Rodrigues S, Kumar B (2011) J Power Sources 196:3310–3316

    Article  CAS  Google Scholar 

  30. Narváez-Semanate JL, Rodrigues ACM (2010) Solid State Ionics 181:1197–1204

    Article  Google Scholar 

  31. Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL (2008) Ionics 14:303–311

    Article  CAS  Google Scholar 

  32. Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2008) J Electrochem Soc 155:A965–A969

    Article  CAS  Google Scholar 

  33. Barin I, Platzki G (1995) Thermochemical data of pure substances, 3rd ed. Weinheim, VCH

  34. Yao KPC, Kwabi DG, Quinlan RA, Mansour AN, Grimaud A, Lee Y-L, Lu Y-C, Shao-Horn Y (2013) J Electrochem Soc 160:A824–A831

    Article  CAS  Google Scholar 

  35. Kitaura H, Zhou H (2012) Adv Energy Mater 2:889–894

    Article  CAS  Google Scholar 

  36. Mi R, Li S, Liu X, Liu L, Li Y, Mei J, Chen Y, Liu H, Wang H, Yan H, Lau WM (2014) J Mater Chem A 2:18746–18753

    Article  CAS  Google Scholar 

  37. Xia C, Bender CL, Bergner B, Peppler K, Janek J (2013) Electrochem Commun 26:93–96

    Article  CAS  Google Scholar 

  38. Kowalczk I, Read J, Salomon M (2007) Pure Appl Chem 79:851–860

    Article  CAS  Google Scholar 

  39. Zhu D, Zhang L, Song M, Wang X, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electrochem 17:2539–2544

    Article  CAS  Google Scholar 

  40. Li X, Faghri A (2012) J Electrochem Soc 159:A1747–A1754

    Article  CAS  Google Scholar 

  41. Thotiyl MM, Freunberger SA, Peng ZQ, Bruce PG (2012) J Am Chem Soc 135:494–500

    Article  Google Scholar 

  42. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Angew Chem Int Edit 52:3887–3890

    Article  CAS  Google Scholar 

  43. Sun B, Huang X, Chen S, Munroe P, Wang G (2014) Nano Lett 14:3145–3152

    Article  CAS  Google Scholar 

  44. Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) ACS Nano 7:3532–3539

    Article  CAS  Google Scholar 

  45. Lu YC, Gasteiger HA, Shao-Horn Y (2011) J Am Chem Soc 133:19048–19051

    Article  CAS  Google Scholar 

  46. Song M, Zhu D, Zhang L, Wang X, Huang L, Shi Q, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electr 17:2061–2069

    Article  CAS  Google Scholar 

  47. Zhai D, Wang HH, Yang J, Lau KC, Li K, Amine K, Curtiss LA (2013) J Am Chem Soc 135:15364–15372

    Article  CAS  Google Scholar 

  48. Shui J, Du F, Xue C, Li Q, Dai L (2014) ACS Nano 8:3015–3022

    Article  CAS  Google Scholar 

  49. Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) J Chem Phys 132:071101–071105

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Synergistic Innovative Joint Foundation of AEP-SCU (No. 0082604132222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungui Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cai, S., Zhu, D. et al. The investigation of water vapor on the Li–O2 battery using a solid-state air cathode. J Solid State Electrochem 19, 2421–2429 (2015). https://doi.org/10.1007/s10008-015-2887-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2887-7

Keywords

Navigation