Skip to main content

Advertisement

Log in

Asymmetric supercapacitors based on the in situ-grown mesoporous nickel oxide and activated carbon

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an asymmetric supercapacitor was successfully assembled using mesoporous Ni foam/Cu/NiO composite and activated carbon (AC) as the positive and negative electrodes, respectively. Its electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charging/discharging techniques, and electrochemical impedance spectroscopy (EIS) in 6 M KOH electrolyte solution. The as-fabricated asymmetric supercapacitor can be cycled stably and reversibly within the potential window between 0 and 1.8 V. A maximum specific capacitance of 76.2 F/g and a high energy density of 34.3 Wh/kg are achieved, which are comparable with other recently published works. Besides, the as-assembled asymmetric supercapacitor could deliver a maximum power density of 8.68 kW/kg because of its low internal resistance (3.2 Ω), which derives from the direct growth of mesoporous active materials on the metal surface without using any polymer additives. This high electrochemical performance shows great potential of the as-assembled asymmetric supercapacitor to serve as energy storage device for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological application. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  3. Hall JP, Bain JE (2008) Energy-storage technologies and electricity generation. Energy Policy 36:4352–4355

    Article  Google Scholar 

  4. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors—an overview. Int J Electrochem Sci 3:1196–1217

    CAS  Google Scholar 

  5. Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles. J Power Sources 112:236–246

    Article  CAS  Google Scholar 

  6. Thounthong P, Rael S, Davat B (2009) Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J Power Sources 193:376–385

    Article  CAS  Google Scholar 

  7. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2031

    Article  CAS  Google Scholar 

  9. Park MS, Lim YG, Hwang SM, Kim JH, Kim JS, Dou SX, Cho J, Kim YJ (2014) Scalable integration of Li5FeO4 towards robust, high performance lithium-ion hybrid capacitors. Chem Sus Chem 7:3138–3144

    Article  CAS  Google Scholar 

  10. Zhao X, Tian H, Zhu MY, Outlaw RA (2009) Carbon nanosheets as the electrode material in supercapacitors. J Power Sources 194:1208–1212

    Article  CAS  Google Scholar 

  11. Pan H, Li JY, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:5654–5668

    Article  Google Scholar 

  12. Salunkhe R, Kamachi Y, Torad N, Huwang SM, Sun ZQ, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2:19848–19854

    Article  CAS  Google Scholar 

  13. Xu Y, Lin Z, Huang X, Wang Y, Huang Y, Duan X (2013) Functionalized graphene hydrogel-based high-performance supercapacitors. Adv Mater 25:5779–5784

    Article  CAS  Google Scholar 

  14. Salunkhe R, Lin JJ, Malgras V, Dou SX, Kim JH, Yamauchi Y (2014) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  Google Scholar 

  15. Bello A, Fabiane M, Momodu DY, Khamlich S, Dangbegnon JK, Manyala N (2014) Functionalized graphene foam as electrode for improved electrochemical storage. J Solid State Electrochem 18:2359–2365

    Article  CAS  Google Scholar 

  16. Wang XY, Liu L, Wang XY, Bai L, Wu H, Zhang XY, Yi LH, Chen QQ (2011) Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. J Solid State Electrochem 15:643–648

    Article  CAS  Google Scholar 

  17. Fisher RA, Watt MR, Ready WJ (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2:M3170–M3177

    Article  CAS  Google Scholar 

  18. Ataherian F, Wu NL (2011) 1.2 volt manganese oxide symmetric supercapacitor. Electrochem Commun 13:1264–1267

    Article  CAS  Google Scholar 

  19. Jagadale AD, Kumbhar VS, Dhawale DS, Lokhande CD (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim Acta 98:32–38

    Article  CAS  Google Scholar 

  20. Aradilla D, Estrany F, Aleman C (2011) Symmetric supercapacitors based on multilayers of conducting polymers. J Phys Chem C 115:8430–8438

    Article  CAS  Google Scholar 

  21. Leela Mohana Reddy A, Estaline Amitha F, Jafri I, Ramaprabhu S (2008) Asymmetric flexible supercapacitor stack. Nanoscale Res Lett 3:145–151

    Article  Google Scholar 

  22. Hahm MG, Leela Mohana Reddy A, Cole DP, Rivera M, Ajayan PM, Vajtai R (2012) Carbon nanotube–nanocup hybrid structures for high power supercapacitor applications. Nano Lett 12:5616–5621

    Article  CAS  Google Scholar 

  23. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    Article  CAS  Google Scholar 

  24. Zhang CF, Xie YB, Zhao MQ, Pentecost AE, Ling Z, Wang JT, Long DH, Ling LC, Qiao WM (2014) Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping. ACS Appl Mater Interfaces 6:9751–9759

    Article  CAS  Google Scholar 

  25. Goikolea E, Daffos B, Taberna PL, Simon P (2013) Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors. Mater Renew Sustain Energy 2:16–23

    Article  Google Scholar 

  26. Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv Funct Mater 23:2758–2764

    Article  CAS  Google Scholar 

  27. Song W, Shao GJ, Wang GL, Ma ZP (2014) Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor. J Solid State Electrochem 18:3173–3180

    Article  CAS  Google Scholar 

  28. Srinivasan V, Weidner JW (1997) An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc 144:L210–L213

    Article  CAS  Google Scholar 

  29. Shin HC, Liu ML (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464

    Article  CAS  Google Scholar 

  30. Yin JL, Park JY (2014) A nickel foam supported copper core/nickel oxide shell composite for supercapacitor applications. Microporous Mesoporous Mater 200:61–67

    Article  CAS  Google Scholar 

  31. Liang K, Tang XZ, Hu WC (2012) High-performance three dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22:11062–11067

    Article  CAS  Google Scholar 

  32. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  33. Huang JC, Xu PP, Cao DX, Zhou XB, Yang SN, Li YJ, Wang GL (2014) Asymmetric supercapacitors based on b-Ni(OH)2 nanosheets and activated carbon with high energy density. J Power Sources 246:371–376

    Article  CAS  Google Scholar 

  34. Gao ZH, Zhang H, Cao GP, Han MF, Yang YS (2013) Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochim Acta 87:375–380

    Article  CAS  Google Scholar 

  35. Niu LY, Li ZP, Sun JF (2013) Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl Mater Interfaces 5:8044–8052

    Article  CAS  Google Scholar 

  36. Lu XF, Lin J, Huang ZX, Li GR (2014) Three-dimensional nickel oxide@carbon hollow hybrid networks with enhanced performance for electrochemical energy storage. Electrochim Acta. doi:10.1016/j.electacta.2014.12.040

    Google Scholar 

  37. Wang HW, Wang XF (2013) Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim Acta 105:353–361

    Article  Google Scholar 

  38. Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14:1533–1539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Pioneer Research Center Program (2010-0019313) and the Basic Science Research Program (2010-0024618) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology. The authors are grateful to the MiNDaP (Micro/Nano devices and Packaging Lab.) group members of Kwangwoon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J.L., Park, J.Y. Asymmetric supercapacitors based on the in situ-grown mesoporous nickel oxide and activated carbon. J Solid State Electrochem 19, 2391–2398 (2015). https://doi.org/10.1007/s10008-015-2885-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2885-9

Keywords

Navigation