Skip to main content
Log in

Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of diphosphonate-bridged dipalladacycles [(phpy)Pd(EtO)2P(O)]2, [(bhq)Pd(EtO)2P(O)]2, [(phpz)Pd(EtO)2P(O)]2 (phpy=2-phenylpyridine, bhq=benzo[h]quinoline, phpz=1-phenylpyrazole), which are known to be involved in catalytic C–H phosphonation reactions, was prepared and characterized by NMR spectroscopy and cyclic voltammetry in acetonitrile solutions and in carbon paste electrode. Diphosphonate dipalladacycles are oxidized irreversibly at more positive potentials as distinguished from related acetate palladacycles. Electrochemical preparative oxidations carried out under mild conditions without any specially added oxidants quantitatively afforded corresponding arylphosphonates. For complete conversion of dipalladacycles into arylphosphonates, four electrons per each palladium atom are required, that probably indicates a mechanism involving Pd(IV)/Pd(II) redox couple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henry PM (1980) Palladium catalyzed oxidation of hydrocarbons. D. Reidel, Boston

    Google Scholar 

  2. Negishi E (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, Hoboken

    Book  Google Scholar 

  3. Hartwig JF (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito

    Google Scholar 

  4. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  5. Stahl SS (2004) Angew Chem Int Ed 43:3400–3420

    Article  CAS  Google Scholar 

  6. Stoltz BM (2004) Chem Lett 33:362–367

    Article  CAS  Google Scholar 

  7. Gligorich KM, Sigman MS (2009) Chem Commun: 3854–3867

  8. Dick AR, Hull KL, Sanford MS (2004) J Am Chem Soc 126:2300–2301

    Article  CAS  Google Scholar 

  9. Canty A (2009) Dalton Trans: 10409–10417

  10. Muniz K (2009) Angew Chem Int Ed 48:9412–9423

    Article  CAS  Google Scholar 

  11. Lyons TW, Sanford MS (2010) Chem Rev 110:1147–1169

    Article  CAS  Google Scholar 

  12. Sehnal P, Taylor RJK, Fairlamb IJS (2010) Chem Rev 110:824–889

    Article  CAS  Google Scholar 

  13. Xu L-M, Li B-J, Yang Z, Shi Z-J (2010) Chem Soc Rev 39:712–733

    Article  CAS  Google Scholar 

  14. Byers PK, Canty AJ, Skelton BW, White AH (1986) Chem Commun:1722–1724

  15. Canty AJ (1992) Acc Chem Res 25:83–90

    Article  CAS  Google Scholar 

  16. Alsters PL, Engel PF, Hogerheide MP, Copijn M, Spek AL, van Koten G (1993) Organometallics 12:1831–1844

    Article  CAS  Google Scholar 

  17. van Asselt R, Rijnberg E, Elsevier CJ (1994) Organometallics 13:706–720

    Article  Google Scholar 

  18. van Belzen R, Hoffmann H, Elsevier CJ (1997) Angew Chem Int Ed 36:1743–1745

    Article  Google Scholar 

  19. Lagunas MC, Gossage RA, Spek AL, van Koten G (1998) Organometallics 17:731–741

    Article  CAS  Google Scholar 

  20. Yamamoto Y, Ohno T, Itoh K (2002) Angew Chem Int Ed 41:3662–3665

    Article  CAS  Google Scholar 

  21. Yamamoto Y, Kuwabara S, Matsuo S, Ohno T, Nishiyama H, Itoh K (2004) Organometallics 23:3898–3906

    Article  CAS  Google Scholar 

  22. Campora J, Palma P, del Rio D, Carmona E, Graiff C, Tiripicchio A (2003) Organometallics 22:3345–3347

    Article  CAS  Google Scholar 

  23. Campora J, Palma P, del Rio D, Lopez JA, Valerga P (2004) Chem Commun: 1490–1491

  24. Powers DC, Ritter T (2011) Top Organomet Chem (2011) 35:129–156

  25. Mirica LM, Khusnutdinova JR (2013) Coord Chem Rev 257:299–314

    Article  CAS  Google Scholar 

  26. Hickman AJ, Sanford MS (2012) Nature 484:177–185

    Article  CAS  Google Scholar 

  27. Kargin YM, Budnikova YH, Martynov BI, Turygin VV, Tomilov AP (2001) J Electroanal Chem 507:157–169

    Article  CAS  Google Scholar 

  28. Budnikova YG, Yakhvarov DG, Kargin YM (1997) Mendeleev Commun: 67-68

  29. Klein A, Budnikova YH, Sinyashin OG (2007) J Organomet Chem 692:3156–3166

    Article  CAS  Google Scholar 

  30. Budnikova Y, Kargin Y, Nedelec JY (1999) J Organomet Chem 575:63–66

    Article  CAS  Google Scholar 

  31. Jutand A (2008) Chem Rev 108:2300–2347

    Article  CAS  Google Scholar 

  32. Bercaw JE, Durrell AC, Gray HB, Green JC, Hazari N, Labinger JA, Winkler JR (2010) Inorg Chem 49:1801–1810

    Article  CAS  Google Scholar 

  33. Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH (2013) Organometallics 32:4785–4792

    Article  CAS  Google Scholar 

  34. Dudkina YB, Mikhaylov DY, Gryaznova TV, Sinyashin OG, Vicic DA, Budnikova YH (2012) Eur J Org Chem: 2114–2117

  35. Budnikova YH, Dudkina YB, Khrizanforov MN, Gryaznova TV (2014) J Organomet Chem 751:301–305

    Article  Google Scholar 

  36. Chuang GJ, Wang W, Lee E, Ritter T (2011) J Am Chem Soc 133:1760–1762

    Article  CAS  Google Scholar 

  37. Berry JF, Cotton FA, Ibragimov SA, Murillo CA, Wang X (2005) Inorg Chem 44:6129–6137

    Article  CAS  Google Scholar 

  38. Powers DC, Geibel MAL, Klein JEMN, Ritter T (2009) J Am Chem Soc 131:17050–17051

    Article  CAS  Google Scholar 

  39. Li C, Yano T, Ishida N, Murakami M (2013) Angew Chem Int Ed 52:9801–9804

    Article  CAS  Google Scholar 

  40. Grayaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova YН (2015) J Organomet Chem 785:68–71

    Article  CAS  Google Scholar 

  41. Powers DC, Ritter T (2009) Nat Chem 1:302–309

    Article  CAS  Google Scholar 

  42. Serrano JL, García L, Pérez J, Pérez E, Galiana JM, García J, Martínez M, Sánchez G, da Silva I (2011) Dalton Trans 40:156–168

    Article  CAS  Google Scholar 

  43. Campbell MG, Powers DC, Raynaud J, Graham MJ, Xie P, Lee E, Ritter T (2011) Nat Chem 3:949–953

    Article  CAS  Google Scholar 

  44. Kohler MC, Stockland RA Jr, Rath NP (2006) Organometallics 25:5746–5756

    Article  CAS  Google Scholar 

  45. Stockland RA Jr, D.Wilson B, Goodman CC, Giese BJ, Shrimp FL II (2007) J Chem Educ 84:694–696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Russian Science Foundation (grant no. 14-23-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Budnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryaznova, T., Dudkina, Y., Khrizanforov, M. et al. Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation. J Solid State Electrochem 19, 2665–2672 (2015). https://doi.org/10.1007/s10008-015-2875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2875-y

Keywords

Navigation