Skip to main content
Log in

Electrocatalytic activity of activated niclosamide on multi-walled carbon nanotubes glassy carbon electrode toward NADH oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive method for the electrocatalytic detection of dihydronicotinamide adenine dinucleotide (NADH) on an activated niclosamide (activatedNIC)-based modified electrode, prepared on a glassy carbon electrode modified with multi-walled carbon nanotubes (GCE/MWCNT/activatedNIC), was developed. This modified electrode shows efficient electrocatalytic oxidation activity toward NADH, at an applied potential of 0.065 V vs Ag/AgCl, with a kinetic constant, k kin, of 1.15 × 104 L mol−1 s−1, evaluated by chronoamperometry. The sensor presents a linear response range from 10.0 up to 280.0 μM with limits of detection and quantification and sensitivity of 3 μM, 10 μM, and 2.4 nA μM−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee TL, Compton RG (2013) Electrochemical detection of NADH, cysteine, or glutathione using a caffeic acid modified glassy carbon electrode. Electroanal 25:1613–1620

    Article  CAS  Google Scholar 

  2. Pinczewska A, Sosna M, Bloodworth S, Kilburn JD, Bartlett PN (2012) High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation. J Am Chem Soc 134:18022–18033

    Article  CAS  Google Scholar 

  3. Deng C, Chen J, Chen X, Xiao C, Nie Z, Yao S (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  4. Fotouhi L, Raei F, Heravi MM, Nematollahi D (2010) Electrocatalytic activity of 6,7-dihydroxy-3-methyl-9-thia-4,4adiazafluoren-2-one/multi-wall carbon nanotubes immobilized on carbon paste electrode for NADH oxidation: application to the trace determination of NADH. J Electroanal Chem 639:15–20

    Article  CAS  Google Scholar 

  5. Santhiago M, Lima PR, Santos WJR, Oliveira AB, Kubota LT (2009) In situ activated 3,5-dinitrobenzoic acid covalent attached to nanostructured platform for NADH electrooxidation. Electrochim Acta 54:6609–6616

    Article  CAS  Google Scholar 

  6. You JM, Jeon S (2011) Electrocatalytic oxidation of NADH on a glassy carbon electrode modified with MWCNT-Pd nanoparticles and poly 3,4-ethylenedioxypyrrole. Electrochim Acta 56:10077–10082

    Article  CAS  Google Scholar 

  7. Chen CH, Chen YC, Lin MS (2013) Amperometric determination of NADH with Co3O4 nanosheet modified electrode. Biosens Bioelectron 42:379–384

    Article  CAS  Google Scholar 

  8. Ge B, Tan Y, Xie Q, Ma M, Yao S (2009) Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sensors Actuators B 137:547–554

    Article  CAS  Google Scholar 

  9. Sosna M, Bonamore A, Gorton L, Boffi A, Ferapontova EE (2013) Direct electrochemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphite electrodes. Biosens Bioelectron 42:219–224

    Article  CAS  Google Scholar 

  10. Yang DW, Liu HH (2009) Poly(brilliant cresyl blue)-carbon nanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens Bioelectron 25:733–738

    Article  Google Scholar 

  11. Zhu L, Zhai J, Yang R, Tian C, Guo L (2007) Electrocatalytic oxidation of NADH with Meldola’s blue functionalized carbon nanotubes electrodes. Biosens Bioelectron 22:2768–2773

    Article  CAS  Google Scholar 

  12. Kochius S, Magnusson AO, Hollmann F, Schrader J, Holtmann D (2012) Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol 93:2251–2264

    Article  CAS  Google Scholar 

  13. Ghanem MA, Chrétien JM, Kilburn JD, Bartlett PN (2009) Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH. Bioelectrochemistry 76:115–125

    Article  CAS  Google Scholar 

  14. Gao Q, Sun M, Peng P, Qi H, Zhang C (2010) Electro-oxidative polymerization of phenothiazine dyes into a multilayer-containing carbon nanotube on a glassy carbon electrode for the sensitive and low-potential detection of NADH. Microchim Acta 168:299–307

    Article  CAS  Google Scholar 

  15. Deng L, Wang Y, Shang L, Wen D, Wang F, Dong S (2008) A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Biosens Bioelectron 24:951–957

    Article  CAS  Google Scholar 

  16. Gorton L, Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. John Wiley & Sons Ltd, Chichester, p 157

    Book  Google Scholar 

  17. Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124–3128

    Article  CAS  Google Scholar 

  18. Wang Q, Tang H, Xie Q, Tan L, Zhang Y, Li B, Yao S (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52:6630–6637

    Article  CAS  Google Scholar 

  19. Aguí L, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón JM (2007) Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochim Acta 52:7946–7952

    Article  Google Scholar 

  20. Vasantha VS, Chen SM (2006) Synergistic effect of a catechin-immobilized poly(3,4-ethylenedioxythiophene)-modified electrode on electrocatalysis of NADH in the presence of ascorbic acid and uric acid. Electrochim Acta 52:665–674

    Article  CAS  Google Scholar 

  21. Huang M, Jiang H, Zhai J, Liu B, Dong S (2007) A simple route to incorporate redox mediator into carbon nanotubes/nafion composite film and its application to determine NADH at low potential. Talanta 74:132–139

    Article  CAS  Google Scholar 

  22. WHO (World Health Organization) (2003) The control of schistosomiasis: second report of the WHO Expert Committee, WHO Technical Reports Series. WHO, Geneva, No. 830, 53

    Google Scholar 

  23. Abreu FC, Goulart MOF, Brett AM (2002) Detection of the damage caused to DNA by niclosamide using an electrochemical DNA-biosensor. Biosens Bioelectron 17:913–919

    Article  CAS  Google Scholar 

  24. AL-Hadiya BM (2005) Niclosamide: comprehensive profile. Prof Drug Subst Excip Relat Methodol 32:67–96

    Article  CAS  Google Scholar 

  25. Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ (2014) Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett 349:8–14

    Article  CAS  Google Scholar 

  26. Andrews P, Thyssen J, Lorke D (1982) The biology and toxicology of molluscicides, Bayluscide®. Pharm Therap 19:245–295

    Article  CAS  Google Scholar 

  27. Ghalkhani M, Shahrokhian S (2010) Application of carbon nanoparticle/chitosan modified electrode for the square wave adsorptive anodic striping voltammetric determination of niclosamide. Electrochem Commun 12:66–69

    Article  CAS  Google Scholar 

  28. Mehretie S, Admassie S, Tessema M, Solomon T (2012) Electrochemical study of niclosamide at poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Sensors Actuators B 168:97–102

    Article  CAS  Google Scholar 

  29. Alemu H (2002) Voltammetric determination of niclosamide at a glassy carbon electrode. Analyst 127:129–134

    Article  CAS  Google Scholar 

  30. Dede E, Saglam O, Dilgin Y (2014) Sensitive voltammetric determination of niclosamide at a disposable pencil graphite electrode. Electrochim Acta 127:20–26

    Article  CAS  Google Scholar 

  31. Yao Y, Zhang L, Duan X, Xu J, Zhou W, Wen Y (2014) Differential pulse stripping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim Acta 127:86–94

    Article  CAS  Google Scholar 

  32. Wang Z, Xu J, Yao Y, Zhang L, Wen Y, Song H, Zhu D (2014) Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sensors Actuators B 196:357–369

    Article  CAS  Google Scholar 

  33. Mano N, Kuhn A (2001) Electrodes modified with nitrofluorenone derivatives as a basis for new biosensors. Biosens Bioelectron 16:653–660

    Article  CAS  Google Scholar 

  34. Munteanu FD, Mano N, Kuhn A, Gorton L (2004) NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. J Electroanal Chem 564:167–178

    Article  CAS  Google Scholar 

  35. Lima PR, Santos WJR, Oliveira AB, Goulart MOF, Kubota LT (2008) Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC)2C6H3–NHOH/(NC)2C6H3–NO from 4-nitrophthalonitrile–(NC)2C6H3–NO2-modified electrode. Biosens Bioelectron 24:448–454

    Article  CAS  Google Scholar 

  36. Sridevi C, Reddy SJJ (1991) Voltammetric determination of niclosamide. J Indian Chem Soc 68:263–266

    CAS  Google Scholar 

  37. Tocher JH (1997) Reductive activation of nitroheterocyclic compounds. Gen Pharmacol: Vasc Sys 28:485–487

    Article  CAS  Google Scholar 

  38. Ezerskis Z, Jusys Z (2001) Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution part–I. A cyclic voltammetry study. J Appl Electrochem 31:1117–1124

    Article  CAS  Google Scholar 

  39. Silva FAS, Lopes CB, Costa EO, Lima PR, Kubota LT, Goulart MOF (2010) Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem Commun 12:450–454

    Article  CAS  Google Scholar 

  40. Zhang DP, Wu WL, Long HY, Liu YC, Yang ZS (2008) Voltammetric behavior of o-nitrophenol and damage to DNA. Int J Mol Sci 9:316–326

    Article  Google Scholar 

  41. Agboola B, Nyokong T (2007) Electrocatalytic oxidation of chlorophenols by electropolymerised nickel(II) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes. Electrochim Acta 52:5039–5045

    Article  CAS  Google Scholar 

  42. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamental and applications, 2nd edn. Wiley, NY

    Google Scholar 

  43. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  44. Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood Press, NY

    Google Scholar 

  45. Analytical Methods Committee (1987) Analyst 112:199–204

    Article  Google Scholar 

  46. Lima PR, Santos WJR, Oliveira AB, Goulart MOF, Kubota LT (2008) Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the l-glutathione detection. J Pharm Biomed Anal 47:758–764

    Article  CAS  Google Scholar 

  47. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic sensing of NADH on a glassy carbon electrode modified with electrografted o-aminophenol film. Electrochem Commun 8:1719–1725

    Article  CAS  Google Scholar 

  48. Tu X, Xie Q, Huang Z, Yang Q, Yao S (2007) Synthesis and characterization of novel quinone-amine polymer/carbon nanotubes composite for sensitive electrocatalytic detection of NADH. Electroanal 19:1815–1821

    Article  CAS  Google Scholar 

  49. Zare HR, Golabi SM (2000) Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH). J Solid State Electrochem 4:87–94

    CAS  Google Scholar 

  50. Dai ZH, Liu FX, Lu GF, Bao JC (2008) Electrocatalytic detection of NADH and ethanol at glassy carbon electrode modified with electropolymerized films from methylene green. J Solid State Electrochem 12:175–180

    Article  CAS  Google Scholar 

  51. Lin Z, Ji L, Medford AJ, Shi Q, Krause WE, Zhang X (2011) Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and β-NADH. J Solid State Electrochem 15:1287–1294

    Article  CAS  Google Scholar 

  52. Prasannakumar S, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Venkatesha TV (2012) Graphene-carbon nanotubes modified graphite electrode for the determination of nicotinamide adenine dinucleotide and fabrication of alcohol biosensor. J Solid State Electrochem 16:3189–3199

    Article  CAS  Google Scholar 

  53. Feng X, Zhang Y, Yan Z, Ma Y, Shen Q, Liu X, Fan Q, Wang L, Huang W (2014) Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. J Solid State Electrochem 18:1717–1723

    Article  CAS  Google Scholar 

  54. Akhgar MR, Salari M, Zamani H (2011) Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem 15:845–853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of CNPq (process 484044/2011-7), INCT Bioanalítica, FAPESP, PROCAD/CAPES, FAPEAL/PRONEX, FAPEAL/PPP/CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Oliveira Fonseca Goulart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.B., de Assis dos Santos Silva, F., Lima, P.R. et al. Electrocatalytic activity of activated niclosamide on multi-walled carbon nanotubes glassy carbon electrode toward NADH oxidation. J Solid State Electrochem 19, 2819–2829 (2015). https://doi.org/10.1007/s10008-015-2862-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2862-3

Keywords

Navigation