Skip to main content
Log in

Size-controlled core–shell-structured Ag@carbon spheres for electrochemical sensing of bisphenol A

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report a facile strategy for preparing Ag nanoparticles with a carbon shell by hydrothermal method, and the effect of Ag source concentration on the resultant stability and sphere sizes was investigated. The field emission scanning electron microscopy and field emission transmission electron microscopy show that the sphere sizes range from 130 nm to 2 μm with the gradual increase of Ag core and carbon shell simultaneously, energy dispersive spectrometry confirms the composition of core–shell-structured Ag@carbon, the face-centered cubic Ag phase is presented by X-ray diffraction analysis, and electrochemical impedance spectroscopy indicates that the conductivity of Ag@carbon changes with its sizes. Thereafter, a series of different sized Ag@carbon catalysts are used for the electrochemical sensing of bisphenol A (BPA). The results show that Ag@carbon sphere with a diameter of about 220 nm is a very effective and stable sensing material for the determination of BPA, which shows good prospects for sensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Wang Y, Zheng YQ, Huang CZ, Xia YN (2013) Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc 135:1941–1951

    Article  CAS  Google Scholar 

  2. Guterman VE, Lastovina TA, Belenov SV, Tabachkova NY, Vlasenko VG, Khodos II, Balakshina EN (2014) PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas. J Solid State Electrochem 18:1307–1317

    Article  CAS  Google Scholar 

  3. Dong CF, Li HL (2014) Synthesis of silver and copper nanoparticles via chemical reduction method. J Xinyang Normal Univ (Nat Sci Ed) 27:72–75

    CAS  Google Scholar 

  4. Afraz A, Rafati AA, Hajian A (2013) Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube–modified glassy carbon electrode. J Solid State Electrochem 17:2017–2025

    Article  CAS  Google Scholar 

  5. Li HY, Wang XL, Yu ZY (2014) Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J Solid State Electrochem 18:105–113

    Article  CAS  Google Scholar 

  6. Kim JY, Lee JS (2010) Synthesis and thermodynamically controlled anisotropic assembly of DNA-silver nanoprism conjugates for diagnostic applications. Chem Mater 22:684–691

    Google Scholar 

  7. Canevari TC, Raymundo–Pereira PA, Landers R, Machado SAS (2013) Direct synthesis of Ag nanoparticles incorporated on a mesoporous hybrid material as a sensitive sensor for the simultaneous determination of dihydroxybenzenes isomers. Eur J Inorg Chem 2013:5746–5754

    Article  CAS  Google Scholar 

  8. Raoof JB, Ojani R, Hasheminejad E, Rashid–Nadimi S (2012) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H2O2. Appl Surf Sci 258:2788–2795

    Article  CAS  Google Scholar 

  9. Derekayaa FB, Akinbingöl HB (2014) Selective carbon monoxide oxidation in H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts. Chem Eng Commun 201:737–750

    Article  Google Scholar 

  10. Pisarek M, Holdynski M, Roguska A, Kudelski A, Janik–Czachor M (2014) TiO2 and Al2O3 nanoporous oxide layers decorated with silver nanoparticles-active substrates for SERS measurements. J Solid State Electrochem 18:3099–3109

    Article  CAS  Google Scholar 

  11. Cozzoli PD, Fanizza E, Comparelli R, Curri ML, Agostiano A (2004) Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J Phys Chem B 108:9623–9630

    Article  CAS  Google Scholar 

  12. Sun XM, Li YD (2005) Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir 21:6019–6024

    Article  CAS  Google Scholar 

  13. Jiang YY, Lu YZ, Han DX, Zhang QX, Niu L (2012) Hollow Ag@Pd core–shell nanotubes as highly active catalysts for the electro-oxidation of formic acid. Nanotechnology 23:105609

    Article  Google Scholar 

  14. Wang HS, Wang C, He YK, Xiao FN, Bao WJ, Xia XH, Zhou GJ (2014) Core–shell Ag@SiO2 nanoparticles concentrated on a micro/nanofluidic device for surface plasmon resonance-enhanced fluorescent detection of highly reactive oxygen species. Anal Chem 86:3013–3019

    Article  CAS  Google Scholar 

  15. Balach J, Bruno MM, Cotella NG, Acevedo DF, Barbero CA (2012) Electrostatic self-assembly of hierarchical porous carbon microparticles. J Power Sources 199:386–394

    Article  CAS  Google Scholar 

  16. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    Article  CAS  Google Scholar 

  17. Bao XL, Qiang ZM, Chang JH, Bin WW, Qu JH (2014) Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water. J Environ Sci 26:962–969

    Article  CAS  Google Scholar 

  18. Errico S, Bianco M, Mita L, Migliaccio M, Rossi S, Nicolucci C, Menale C, Portaccio M, Gallo P, Mita DG (2014) Migration of bisphenol A into canned tomatoes produced in Italy: dependence on temperature and storage conditions. Food Chem 160:157–164

    Article  CAS  Google Scholar 

  19. Kalmykova Y, Moona N, Stromvall AM, Bjoklund K (2014) Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters. Water Res 56:246–257

    Article  CAS  Google Scholar 

  20. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. J Am Med Assoc 300:1303–1310

    Article  CAS  Google Scholar 

  21. Kuang R, Kuang X, Pan SY, Zheng XD, Duan JC, Duan YQ (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta 169:109–115

    Article  CAS  Google Scholar 

  22. Mao SX, Long YM, Li WF, Tu YF, Deng AP (2013) Core–shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron 48:258–262

    Article  CAS  Google Scholar 

  23. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Article  CAS  Google Scholar 

  24. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  25. Kim S, Kim M, Kim YK, Hwang SH, Lim SK (2014) Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Appl Catal B Environ 148:170–176

    Article  Google Scholar 

  26. Sun DW, An BN, Zhang BB, Ru Q, Hou XH, Hu SJ (2014) Porous structure SnSb/amorphous carbon core–shell composite as high capacity anode materials for lithium ion batteries. J Solid State Electrochem 18:2573–2579

    Article  CAS  Google Scholar 

  27. Ding YP, Liu WL, Wu QS, Wang XG (2005) Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J Electroanal Chem 575:275–280

    Article  CAS  Google Scholar 

  28. Zaera F, Gellman AJ, Somorjai GA (1986) Surface science studies of catalysis: classification of reactions. Acc Chem Res 19:24–31

    Article  CAS  Google Scholar 

  29. Fendler JH (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem Rev 87:877–899

    Article  CAS  Google Scholar 

  30. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  31. Liu P, Dong SY, Xie HD, Gu GZ, He ZX, Lu JS, Huang TL (2014) Sensitive simultaneous determination of diethylstilbestrol and bisphenol A based on Bi2WO6 nanoplates modified carbon paste electrode. J Electroanal Chem 726:15–20

    Article  Google Scholar 

  32. Zhang L, Wen YP, Yao YY, Wang ZF, Duan XM, Xu JK (2014) Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin Chem Lett 25:517–522

    Article  CAS  Google Scholar 

  33. Ma M, Tu XJ, Zhan GQ, Li CY, Zhang SH (2014) Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface. Microchim Acta 181:565–572

    Article  CAS  Google Scholar 

  34. Yu XW, Chen YK, Chang LP, Zhou L, Tang FX, Wu XP (2013) β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sens Actuator B Chem 186:648–656

    Article  CAS  Google Scholar 

  35. Deng PH, Xu ZF, Feng YL (2013) Sensitive determination of bisphenol A in plastic products by derivative voltammetry using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan. Int J Environ Anal Chem 93:1116–1131

    Article  CAS  Google Scholar 

  36. Niu XL, Yang W, Wang GY, Ren J, Guo H, Gao JZ (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 98:167–175

    Article  CAS  Google Scholar 

  37. Zhang YX, Cheng YX, Zhou YY, Li BY, Gu W, Shi XH, Xian YZ (2013) Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 107:211–218

    Article  CAS  Google Scholar 

  38. Li YT, Yang C, Ning JY, Yang YL (2014) Cloud point extraction for the determination of bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by high-performance liquid chromatography. Anal Methods 6:3285–3290

    Article  CAS  Google Scholar 

  39. Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

  40. Zheng ZX, Du YL, Wang ZH, Feng QL, Wang CM (2013) Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 138:693–701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (no. 61201091, no. 21375114) and the open fund of the State Key Laboratory of Lake Science and Environment (no. 2014SKL013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, T., Shi, Z., Wang, K. et al. Size-controlled core–shell-structured Ag@carbon spheres for electrochemical sensing of bisphenol A. J Solid State Electrochem 19, 2299–2309 (2015). https://doi.org/10.1007/s10008-015-2860-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2860-5

Keywords

Navigation