Skip to main content
Log in

Photoelectrochemical analysis of passive films formed on Ni and its alloys and its application to their corrosion behaviors

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A review is presented of the photoelectrochemical and Mott–Schottky analysis for the passive film formed on Ni and its alloys, and also of its application to clarifying the role of chloride ion and solution temperature in their corrosion behaviors. Photocurrent spectra for the passive film of Ni and its alloys, measured by the continuous illumination technique, can be resolved into spectral components, each of which originated from each compound comprising the passive film such as inner NiO and outer Ni(OH)2. The composition, structure, and electronic band structure of the passive films were characterized by comparing the band gap energy and the shape and peak position in the photocurrent spectra for the films with those for the thermally grown oxide. Mott–Schottky analysis revealed that the concentration of cation vacancy in p-type passive film of Ni is significantly increased either with addition of chloride ion or with raising solution temperature The significant increase in the concentration of cation vacancy is found to be main reason for the Cl inducing passivity breakdown and also for the increase in corrosion rate with solution temperature. These experimental results are well corresponded to the role of Cl in the passivity breakdown proposed by the point defect model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wilhelm SM, Hackerman N (1981) J Electrochem Soc 128:1668–1674

    Article  CAS  Google Scholar 

  2. Sunseri C, Piazza S, Di Quarto F (1995) Mater Sci Forum 185–188:435–446

    Article  Google Scholar 

  3. Fujimoto S, Tsuchiya H, Sakamoto M, Shibata T, Asami K (2002) 201st Meeting of the Electrochemical Society, Philadelphia, Pennsylvania, 12-17 May 278

  4. Jang H, Park C, Kwon H (2005) Electrochim Acta 50:3503–3508

    Article  CAS  Google Scholar 

  5. Lim AS, Atrens A (1992) Appl Phys A 54:343–349

    Article  Google Scholar 

  6. Jabs T, Borthen P, Strehblow HH (1997) J Electrochem Soc 144:1231–1243

    Article  CAS  Google Scholar 

  7. Boudin S, Vignes JL, Lorang G, Da Cunha BM, Blondiaux G, Mikhailov SM, Jacobs JP, Brongersma HH (1994) Surf Interface Anal 22:462–466

    Article  CAS  Google Scholar 

  8. Bojinov M, Fabricius G, Kinnunen P, Laitinen T, Mäkelä K, Saario T, Sundholm G (2001) J Electroanal Chem 504:29–44

    Article  CAS  Google Scholar 

  9. Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P (2002) Scott P Surf. Interface Anal 34:197–200

    Article  CAS  Google Scholar 

  10. Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P (2004) Electrochim Acta 49:3957–3964

    Article  CAS  Google Scholar 

  11. Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M (2003) J Nucl Sci Technol 40:509–516

    Article  CAS  Google Scholar 

  12. Montemor MF, Ferreira MGS, Walls M, Rondot B, Da Cunha BM (2003) Corrosion 59:11–21

    Article  CAS  Google Scholar 

  13. Dutta RS, Lobo A, Purandare R, Kulkarni SK, Dey GK (2002) Metall Mater Trans A 33A:1437–1447

    Article  CAS  Google Scholar 

  14. Jang H, Oh KN, Ahn S, Kwon H (2014) Met Mater Int 20:277–283

    Article  CAS  Google Scholar 

  15. Paik WK, Szklarska-Smialowska Z (1980) Surf Sci 96:401–412

    Article  CAS  Google Scholar 

  16. Scherer J, Ocko BM, Magnussen OM (2003) Electrochim Acta 48:1169–1191

    Article  CAS  Google Scholar 

  17. Marcus P, Herbelin JM (1993) Corros Sci 34:1123–1145

    Article  CAS  Google Scholar 

  18. Ohtsuka T, Schoner K, Heusler KE (1978) J Electroanal Chem 93:171–182

    Article  CAS  Google Scholar 

  19. Sato N, Kudo K (1974) Electrochim Acta 19:461–470

    Article  CAS  Google Scholar 

  20. Chao CY, Szklarska-Smialowska Z, Macdonald DD (1982) J Electroanal Chem 131:289–297

    Article  CAS  Google Scholar 

  21. MacDougall B, Cohen MJ (1974) Electrochem Soc 121:1152–1159

    Article  CAS  Google Scholar 

  22. MacDougall B, Cohen M (1976) J Electrochem Soc 123:191–197

    Article  CAS  Google Scholar 

  23. Maurice V, Yang WP, Marcus P (1996) J Electrochem Soc 143:1182–1200

    Article  CAS  Google Scholar 

  24. Haupt S, Strehblow HH (1995) Corros Sci 37:43–54

    Article  CAS  Google Scholar 

  25. Oblonsky LJ, Ryan MP, Isaacs HS (1998) J Electrochem Soc 145:1922–1932

    Article  CAS  Google Scholar 

  26. Kirchheim R, Heine B, Fischmeister H, Hofmann S, Knote H, Stolz U (1989) Corros Sci 29:899–917

    Article  CAS  Google Scholar 

  27. Lorang G, Da Cunha BM, Simões AMP, Ferreira MGS (1994) J Electrochem Soc 141:3347–3356

    Article  CAS  Google Scholar 

  28. Hakiki NE, Boudin S, Rondot B, Da Cunha BM (1995) Corros Sci 37:1809–1822

    Article  CAS  Google Scholar 

  29. Cho E, Kwon H, Macdonald DD (2002) Electrochim Acta 47:1661–1668

    Article  CAS  Google Scholar 

  30. Fujimoto S, Chihara O, Shibata T (1998) Mater Sci Forum 289–292:989–996

    Article  Google Scholar 

  31. Sunseri C, Piazza S, Di Paola A, Di Quarto F (1987) J Electrochem Soc 134:2410–2416

    Article  CAS  Google Scholar 

  32. Ahn S, Kwon H (2004) Electrochim Acta 49:3347–3353

    Article  CAS  Google Scholar 

  33. Kim J, Cho E, Kwon H (2000) Corros Sci 43:1403–1415

    Article  Google Scholar 

  34. Ferreira MGS, Hakiki NE, Goodlet G, Faty S, Simões AMP, Da Cunha BM (2001) Electrochim Acta 46:3767–3776

    Article  CAS  Google Scholar 

  35. Di Paola A (1989) Electrochim Acta 34:203–210

    Article  Google Scholar 

  36. Simões AMP, Ferreira MGS, Rondot B, Da Cunha BM (1990) J Electrochem Soc 137:82–87

    Article  Google Scholar 

  37. Gerischer H (1989) Corros Sci 29:257–266

    Article  CAS  Google Scholar 

  38. Trabanelli G, Zucchi F, Brunoro G, Bolognesi GP (1972) Thin Solid Films 13:131–142

    Article  CAS  Google Scholar 

  39. Myamlin VA, Pleskov YV (1967) Electrochemistry of semiconductors. Plenum, New York

    Book  Google Scholar 

  40. Macdonald DD (1992) J Electrochem Soc 139:3434–3449

    Article  CAS  Google Scholar 

  41. Schmuki P, Bohni H (1991) Werkst Korros 42:203–207

    CAS  Google Scholar 

  42. Schmuki P, Bohni H (1992) J Electrochem Soc 139:1908–1913

    Article  CAS  Google Scholar 

  43. Di Quarto F, Santamaria M (2004) Corros Eng Sci Technol 39:71–81

    Article  Google Scholar 

  44. Sato N (2000) Corros Sci 42:1957–1973

    Article  CAS  Google Scholar 

  45. Gärtner WW (1959) Phys Rev 116:84–87

    Article  Google Scholar 

  46. Bube RH (1992) Photoelectronic properties of semiconductors. Cambridge University Press, Cambridge UK

    Google Scholar 

  47. Azumi K, Ohtsuka T, Sato N (1990) Corros Sci 31:715–720

    Article  CAS  Google Scholar 

  48. Abrantes LM, Peter LM (1983) J Electroanal Chem 150:593–601

    Article  CAS  Google Scholar 

  49. Hara N, Sugimoto K (1988) Jpn J Metal Inst 52:189

    CAS  Google Scholar 

  50. Piazza S, Sperandeo M, Sunseri C, Di Quarto F (2004) Corros Sci 46:831–851

    Article  CAS  Google Scholar 

  51. Tsuchiya H, Fujimoto S, Shibata T (2004) J Electrochem Soc 151:B39–B44

    Article  CAS  Google Scholar 

  52. Kim J, Cho E, Kwon H (2001) Electrochim Acta 47:415–421

    Article  CAS  Google Scholar 

  53. Kim D, Ahn S, Kwon H (2006) Thin Solid Films 513:212–216

    Article  CAS  Google Scholar 

  54. Jang H, Park C, Kwon H (2010) Met Mater Int 16:247–252

    Article  CAS  Google Scholar 

  55. Jang H, Kwon H (2006) Corros Sci Technol 5:141–148

    Google Scholar 

  56. Jang H, Kwon H (2006) J Electroanal Chem 590:120–125

    Article  CAS  Google Scholar 

  57. Jang H, Park C, Kwon H (2009) Met Mater Int 15:57–62

    Article  CAS  Google Scholar 

  58. Jang H, Kwon H (2007) ECS Trans 3:1–11

    Article  CAS  Google Scholar 

  59. Lee S, Cho E, Ahn S, Kwon H (2001) Electrochim Acta 46:2605–2611

    Article  CAS  Google Scholar 

  60. Macdonald DD (1999) Pure Appl Chem 71:951–978

    Article  CAS  Google Scholar 

  61. Ahn S, Kwon H, Macdonald DD (2005) J Electrochem Soc 152:B482–B490

    Article  Google Scholar 

  62. Lin LF, Chao CY, Macdonald DD (1981) J Electrochem Soc 128:1187–1194

    Article  Google Scholar 

  63. Macdonald DD, Smedley SI (1990) Electrochim Acta 35:1949–1956

    Article  CAS  Google Scholar 

  64. Sikora E, Macdonald DD (2002) Electrochim Acta 48:69–77

    Article  CAS  Google Scholar 

  65. Macdonald DD, Biaggio SR, Song H (1992) J Electrochem Soc 139:170–17

    Article  CAS  Google Scholar 

  66. Park K, Ahn S, Kwon H (2011) Electrochim Acta 56:1662–1669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyukSang Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Kwon, H. Photoelectrochemical analysis of passive films formed on Ni and its alloys and its application to their corrosion behaviors. J Solid State Electrochem 19, 3427–3438 (2015). https://doi.org/10.1007/s10008-015-2830-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2830-y

Keywords

Navigation