Skip to main content
Log in

Redox processes of 2,6-dichlorophenolindophenolate in different solvents. A combined electrochemical, spectroelectrochemical, photochemical, and theoretical study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetric and EPR/UV-vis-NIR spectroelectrochemical studies were performed to examine the cathodic reduction of 2,6-dichlorophenolindophenolate (DCIP) in proton-donating aqueous and methanol solutions, as well as in aprotic dimethylsulfoxide (DMSO), and to characterize the paramagnetic species generated upon the DCIP reduction. In situ EPR and UV-vis-NIR spectroelectrochemistry confirmed the formation of the radical anion DCIP•– in DMSO and methanol. The same radical anion was found also in the reaction system consisting of KO2 mixed under argon with DCIP in DMSO or methanol, evidencing the electron transfer from superoxide radical anion to DCIP. The expected radical anion DCIP•– was not detected in the photoexcited suspensions DCIP/TiO2/DMSO under argon, which indicates fast consecutive reactions of photogenerated DCIP•– in the vicinity of TiO2 surface. The reduction of blue-color DCIP to the final colorless product DCIPH2 can be realized in multiple reaction pathways determined mainly by the proton-donating capacity of the solvent. Following the calculated total DFT energies, the oxygen on the indophenol moiety represents the first proton acceptor site for DCIP, DCIP•–, as well as for DCIP2– species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cohen B, Gibbs HD, Clark WM (1924) Public Health Rep 39:381–414

    Article  CAS  Google Scholar 

  2. Bidoia ED, Mantagnolli RN, Lopes PRM (2010) In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, pp 1277–1288

    Google Scholar 

  3. Cabello C, Bair W, Bause A, Wondrak G (2009) Biochem Pharmacol 78:344–354

    Article  CAS  Google Scholar 

  4. Kumar S, Acharya S (1999) Anal Biochem 268:89–93

    Article  CAS  Google Scholar 

  5. Aiuchi T, Nakajo S, Nakaya K (2004) Biol Pharm Bull 27:736–738

    Article  CAS  Google Scholar 

  6. Kong C, Li DW, Li Y, Partovi-Nia R, James TD, Long YT, Tian H (2012) Analyst 137:1094–1096

    Article  CAS  Google Scholar 

  7. Florou AB, Prodromidis MI, Karayannis MI, Tzouwara-Karayanni SM (1998) Electroanalysis 10:1261–1268

    Article  CAS  Google Scholar 

  8. Florou AB, Prodromidis MI, Karayannis MI, Tzouwara-Karayanni SM (2000) Electroanalysis 12:361–368

    Article  CAS  Google Scholar 

  9. Mills A, McGrady M, Wang J, Hepburn J (2008) Int J Photoenergy ID 504945

  10. Brezová V, Čeppan M, Veselý M, Lapčík L (1991) Chem Pap 45:233–246

    Google Scholar 

  11. Mills A, McGrady M (2008) J Photochem Photobiol A Chem 193:228–236

    Article  CAS  Google Scholar 

  12. Krýsa J, Baudys M, Mills A (2015) Catal Today 240:132–137

    Article  Google Scholar 

  13. Kafizas A, Mills A, Parkin IP (2010) Anal Chim Acta 663:69–76

    Article  CAS  Google Scholar 

  14. Prokof'ev AN, Solodovnikov SP, Nikiforov GA, Ershov VV (1971) Bull Acad Sci USSR Div Chem Sci 20:262–265

    Article  Google Scholar 

  15. Duling DR (1994) J Magn Reson B 104:105–110

    Article  CAS  Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  19. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  20. Hehre WJ, Ditchfield K, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  21. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  22. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  23. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A,1. Gaussian Inc, Pittsburgh

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  26. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  Google Scholar 

  27. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  28. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  29. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  30. Barone V (1995) In: Chong DP (ed) Recent advances in density functional methods. Part 1. World Scientific, Singapore

    Google Scholar 

  31. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH

  32. Laviron E (1984) J Electroanal Chem 164:213–227

    Article  CAS  Google Scholar 

  33. Rao PS, Hayon E (1973) J Phys Chem 77:2753–2756

    Article  CAS  Google Scholar 

  34. Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  35. Brezová V, Tarábek P, Dvoranová D, Staško A, Biskupič S (2003) J Photochem Photobiol A Chem 155:179–198

    Article  Google Scholar 

  36. Dvoranová D, Barbieriková Z, Brezová V (2014) Molecules 19:17279–17304

    Article  Google Scholar 

  37. Micic O, Zhang Y, Cromack K, Trifunac A, Thurnauer M (1993) J Phys Chem 97:13284–13288

    Article  CAS  Google Scholar 

  38. Di Paola A, Bellardita M, Palmisano L, Barbieriková Z, Brezová V (2014) J Photochem Photobiol A Chem 273:59–67

    Article  Google Scholar 

  39. Bahnemann D, Hilgendorff M, Memming R (1997) J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  40. Barbieriková Z, Mihalíková M, Brezová V (2012) Photochem Photobiol 88:1442–1454

    Article  Google Scholar 

  41. Brezová V, Gabčová S, Dvoranová D, Staško A (2005) J Photochem Photobiol B Biol 79:121–134

    Article  Google Scholar 

  42. Buettner GR (1987) Free Radic Biol Med 3:259–303

    Article  CAS  Google Scholar 

  43. Wardman P (1989) J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  44. Brezová V, Blažková A, Šurina I, Havlínová B (1997) J Photochem Photobiol A Chem 107:233–237

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Grant Agency of the Slovak Republic (Projects VEGA/1/0041/15, VEGA/1/0307/14, VEGA/1/0327/12). The calculations were performed at HPC center, SUT Bratislava (SIVVP project, ITMS code 26230120002, funded by the European Region Development Funds) and Computing Centre SAS, code 26210120002 (Slovak infrastructure for high-performance computing) supported by the Research & Development Operational Program funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Dvoranová.

Additional information

Dedicated to Prof. Mikhail A. Vorotyntsev in the occasion of his 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoranová, D., Barbieriková, Z., Dorotíková, S. et al. Redox processes of 2,6-dichlorophenolindophenolate in different solvents. A combined electrochemical, spectroelectrochemical, photochemical, and theoretical study. J Solid State Electrochem 19, 2633–2642 (2015). https://doi.org/10.1007/s10008-015-2823-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2823-x

Keywords

Navigation