Skip to main content

Advertisement

Log in

Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the paper, charging–discharging processes in symmetric electrochemical supercapacitors with activated carbon electrodes were studied. Mathematical modeling and experimental verification of these processes were performed. Such factors as the charging of the electric double layer, diffusion–migration transport of species in pores of the electrodes and separator, quasi-reversible Faraday redox reactions of surface groups, kinetics of which is related to the Butler–Volmer type, and porous structure of the electrodes with hydrophobic–hydrophilic characteristics were taken into consideration. The dependencies of energy efficiency on time of charging and discharging, current, and thickness of the electrodes have been calculated. These relations are very important when supercapacitors are applied to smoothing of peak load of electrical networks. The dependence of the efficiency on current is characterized by a maximum and a minimum. The optimal operating modes for the supercapacitors have been found to depend on device parameters. It is important to note that the efficiency value is close to 100 % for supercapacitors under certain conditions, but this magnitude is unattainable for batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A 1 and A 2 :

Parameters, see Eqs. (4) and (5)

C :

Specific capacitance

c :

Concentration of electrolyte

c 10 :

Initial concentration of electrolyte

D :

Diffusion coefficient

D eff :

Effective diffusion coefficient

E :

Overpotential

E 0 :

Equilibrium potential

F:

Faraday number

i 0 :

Exchange current density

j ad :

Adsorption current

j C :

Charging current of EDL

G :

Rate coefficient of adsorption energy

k :

Conductivity of electrolyte

k eff :

Effective conductivity of electrolyte

L ele :

Electrode thickness

L sep :

Separator thickness

Q θ :

Specific molar capacitance of adsorption

q i :

Electrode charging factor

r :

Pore radius

r*:

Effective pore radius

S :

Surface density

T :

Time

t + :

Transfer number

X :

Coordinate

Α :

Wetting angle

Β :

Transfer coefficient

φ e :

Electric potential of electrolyte

φ s :

Electric potential of solid phase

θ 0 :

Initial fraction of the covered surface

σ eff :

Effective conductivity of the electrode

References

  1. Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

  3. Largeot C, Portet C, Chmiola J et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  4. Mysyk R, Raymundo-Piñero E, Béguin F (2009) Saturation of subnanometer pores in an electric double-layer capacitor. Electrochem Commun 11:554–556

    Article  CAS  Google Scholar 

  5. Kondrat S, Kornyshev A (2011) Superionic state in double-layer capacitors with nanoporous electrodes. J Phys Condens Matter 23:022201

  6. Fritts DH (1997) An analysis of electrochemical capacitors. J Electrochem Soc 144:2233–2241

    Article  CAS  Google Scholar 

  7. Dunn D, Newman J (2000) Predictions of specific energies and specific powers of double-layer capacitors using a simplified model. J Electrochem Soc 147:820–830

    Article  CAS  Google Scholar 

  8. Diab Y, Venet P, Rojat G (2006) Comparison of the different circuits used for balancing the voltage of supercapacitors: studying performance and lifetime of supercapacitors. ESSCAP, Lausanne, Switzerland. pp. on CD

  9. Newman JS, Tobias CW (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109:1183–1191

    Article  CAS  Google Scholar 

  10. Newman J, Tiedemann W (1975) Porous electrode theory with battery applications. AIChE J 21:25–41

    Article  CAS  Google Scholar 

  11. Newman J, Thomas-Alyea KE (2004) Electrochemical systems. John Wiley & Sons, New York

    Google Scholar 

  12. De Levie R (1963) On porous electrodes in electrolyte solutions. I. Capacitance effects. Electrochim Acta 8:751–780

    Article  Google Scholar 

  13. Vol’fkovich YM, Mazin VM, Urisson NA (1998) Operation of double-layer capacitors based on carbon materials. Russ J Electrochem 34:740–746

    Google Scholar 

  14. Srinivasan V, Weidner JW (1999) Mathematical modeling of electrochemical capacitors. J Electrochem Soc 146:1650–1658

    Article  CAS  Google Scholar 

  15. Lin C, Popov BN, Ploehn HJ (2002) Modeling the effects of electrode composition and pore structure on the performance of electrochemical capacitors. J Electrochem Soc 149:A167–A175

    Article  CAS  Google Scholar 

  16. Biesheuvel PM, Bazant MZ (2010) Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys Rev E - Stat Nonlin Soft Matter Phys 81:031502

    Article  CAS  Google Scholar 

  17. Volfkovich YM, Mikhailin AA, Bograchev DA, Sosenkin VE, Bagotsky VS (2012) Studies of supercapacitor carbon electrodes with high pseudocapacitance, INTECH Open Access Publisher

  18. Staser JA, Weidner JW (2014) Mathematical modeling of hybrid asymmetric electrochemical capacitors. J Electrochem Soc 161:E3267–E3275

    Article  CAS  Google Scholar 

  19. Tarasevich MR (1984) Elektrohimija uglerodnyh materialov, Nauka, Moscow, (in Russian)

  20. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  21. Lebègue E, Brousse T, Crosnier O et al (2012) Direct introduction of redox centers at activated carbon substrate based on acid-substituent-assisted diazotization. Electrochem Commun 25:124–127

    Article  Google Scholar 

  22. Vol’fkovich YM, Mikhalin AA, Rychagov AY (2013) Surface conductivity measurements for porous carbon electrodes. Russ J Electrochem 49:594–598

    Article  Google Scholar 

  23. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565. doi:10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  24. Zhong Y, Zhang J, Li G, Liu A (2006) Research on energy efficiency of supercapacitor energy storage system. Power System Technology, 2006. PowerCon 2006. International Conference on (pp. 1–4). IEEE

  25. Pillay B, Newman J (1996) The influence of side reactions on the performance of electrochemical double layer capacitors. J Electrochem Soc 143:1806–1814

    Article  CAS  Google Scholar 

  26. Gileadi E (1993) Electrode kinetics for chemists, chemical engineers and materials scientists. Wiley-VCH, New York

  27. Volfkovich YM, Bagotzky VS (1994) The method of standard porosimetry: 1. Principles and possibilities. J Power Sources 48:327–338

    Article  CAS  Google Scholar 

  28. Volfkovich YM, Bagotzky VS, Sosenkin VE, Blinov IA (2001) The standard contact porosimetry. Colloids Surf A Physicochem Eng Asp 187:349–365

    Article  Google Scholar 

  29. Volfkovich YM, Bograchev DA, Mikhalin AA, Bagotsky VS (2014) Supercapacitor carbon electrodes with high capacitance. J Solid State Electrochem 18(5):1351–1363

    Article  CAS  Google Scholar 

  30. Volfkovich YM, Rychagov AY, Sosenkin VE, Efimov ON, Osmakov МI, Seliverstov AF (2014) Russ J Electrochem 50:1099–1101

Download references

Acknowledgments

We thank Dr. Yu. S. Dzyazko deeply for the helpful notices regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bograchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Bograchev, D.A., Rychagov, A.Y. et al. Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification. J Solid State Electrochem 19, 2771–2779 (2015). https://doi.org/10.1007/s10008-015-2804-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2804-0

Keywords

Navigation