Skip to main content
Log in

High-yield synthesis of Li2MnSiO4/C composites by hot isostatic pressing as lithium-ion battery cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The high-yield synthesis of Li2MnSiO4/C composites was realized under hot isostatic pressure (HIP) using a stainless steel capsule. We investigated the effect of temperature and pressure on the synthesis of Li2MnSiO4 and found that the synthesis temperature decreased with the increase of HIPing pressure and vice versa. By adjusting the reaction parameters (temperature, pressure, and time), we obtained Li2MnSiO4/C composites with different size and morphology. Among these various products, Li2MnSiO4/C films, which are composed of nanoparticles about 10–15 nm diameter, deliver a discharge capacity of 273 mAh g−1 at 0.05 C, and maintain a discharge capacity of 180 mAh g−1 after 50 cycles. When the current is increased to 5 C, the discharge capacity of 86 mAh g−1 can be retained after 20 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayner CM, Zhao X, Kung HH (2012) Materials for rechargeable lithium-ion batteries. Annu Rev Chem Biomol Eng 3:445–471

    Article  CAS  Google Scholar 

  2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  3. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  4. Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21:2470–2475

    Article  CAS  Google Scholar 

  5. Liu J, Xu H, Jiang X, Yang J, Qian Y (2013) Facile solid-state synthesis of Li2MnSiO4/C nanocomposite as a superior cathode with a long cycle life. J Power Sources 231:39–43

    Article  CAS  Google Scholar 

  6. Zhao Y, Wu C, Li J, Guan L (2013) Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network. J Mater Chem A 1:3856–3859

    Article  CAS  Google Scholar 

  7. Devaraj S, Kuezma M, Ng CT, Balaya P (2013) Sol–gel derived nanostructured Li2MnSiO4/C cathode with high storage capacity. Electrochim Acta 102:290–298

    Article  CAS  Google Scholar 

  8. Devaraju MK, Tomai T, Unemoto A, Honma I (2013) Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications. RSC Adv 3:608–615

    Article  CAS  Google Scholar 

  9. Zhang M, Zhao S, Chen Q, Yan G (2014) Li2+xMnSi1−xAlxO4/C nanoparticles for high capacity lithium-ion battery cathode applications. RSC Adv 4:30876–30880

    Article  CAS  Google Scholar 

  10. Kuezma M, Devaraj S, Balaya P (2012) Li2MnSiO4 obtained by microwave assisted solvothermal method: electrochemical and surface studies. J Mater Chem 22:21279–21284

    Article  CAS  Google Scholar 

  11. Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22:14661–14666

    Article  CAS  Google Scholar 

  12. Ito S, Umehara N, Takata H, Fujii T (2004) Phase transition of γ-Al2O3 under hot isostatic pressure. Solid State Ion 172:403–406

    Article  CAS  Google Scholar 

  13. Song HK, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20:3818–3834

    Article  CAS  Google Scholar 

  14. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M= Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12:1146–1151

    Article  CAS  Google Scholar 

  15. Chang YC, Peng CT, Hung IM (2014) Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J Mater Sci 49:6907–6916

    Article  CAS  Google Scholar 

  16. Xiang X, Fu Z, Li W (2013) Morphology-controllable synthesis of LiMn2O4 particles as cathode materials of lithium batteries. J Solid State Electrochem 17:1201–1206

    Article  CAS  Google Scholar 

  17. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    Article  CAS  Google Scholar 

  18. Zhang M, Chen Q, Xi Z, Hou Y, Chen Q (2012) One-step hydrothermal synthesis of Li2FeSiO4/C composites as lithium-ion battery cathode materials. J Mater Sci 47:2328–2332

    Article  CAS  Google Scholar 

  19. Chi ZX, Zhang W, Cheng FQ, Chen JT, Cao AM, Wan LJ (2014) Optimizing the carbon coating on LiFePO4 for improved battery performance. RSC Adv 4:7795–7798

    Article  CAS  Google Scholar 

  20. Yang K, Deng Z, Suo J (2012) Effects of carbon sources and carbon contents on the electrochemical properties of LiFePO4/C cathode material. J Solid State Electrochem 16:2805–2813

    Article  CAS  Google Scholar 

  21. Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222

    Article  CAS  Google Scholar 

  22. Zhang M, Yan G, Hou Y, Wang C (2009) Mesoscale assembly of NiO nanosheets into spheres. J Solid State Chem 182:1206–1210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from Zhengzhou Key Laboratory for Clean Energy (111PYFZX151) and Science and Technology Key Project from Education Department of Henan Province (13A150186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Chen, Q., Miao, B. et al. High-yield synthesis of Li2MnSiO4/C composites by hot isostatic pressing as lithium-ion battery cathodes. J Solid State Electrochem 19, 943–947 (2015). https://doi.org/10.1007/s10008-014-2694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2694-6

Keywords

Navigation