Skip to main content
Log in

Effect of radio frequency power and thickness on the electrochemical properties of Li2−x MnO3−y thin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, Li2−x MnO3−y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 °C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 μAh μm−1 cm−2 in the potential window 2.0–3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 μAh μm−1 cm−2 at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 μAh μm−1 cm−2 was achieved in the potential window 2.0–4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Bates JB, Dudney NJ, Neudecker BJ, Ueda A, Evans CD (2000) Thin film lithium and lithium-ion batteries. Solid State Ionics 135:33–45

    Article  CAS  Google Scholar 

  3. Neudecker BJ, Dudney NJ, Bates JB (2000) Lithium-free thin film battery with in situ plated Li anode. J Electrochem Soc 147:517–523

    Article  CAS  Google Scholar 

  4. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  5. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  6. Fischer J, Adelhelm C, Bergfeldt T, Chang K, Ziebert C, Leiste H, Stuber M, Ulrich S, Music D, Hallstedt B, Seifert HJ (2013) Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering. Thin Solid Films 528:217–223

    Article  CAS  Google Scholar 

  7. Lin YM, Wu HC, Yen YC, Guo ZZ, Hu M, Yang CHM, ShuenSheu H, Wu N (2005) Enhanced high-rate cycling stability of LiMn2O4 cathode by ZrO2 coating for Li-ion battery. J Electrochem Soc 152:A1526–A1532

    Article  CAS  Google Scholar 

  8. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nano rods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  9. Le MLP, Lam TXB, Pham QT, Nguyen TPT (2011) Investigation of positive electrode materials based on MnO2 for lithium batteries. Adv Nat Sci Nano sci Nano technol 2:025014-8(pp)

  10. Cui Z, Guo X, Li H (2013) High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J Power Sources 244:731–735

    Article  CAS  Google Scholar 

  11. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  12. Rossouw MH, Thackeray MM (1991) Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mat Res Bull 26:463–473

    Article  CAS  Google Scholar 

  13. Pasero D, McLaren V, De Souza S, West AR (2005) Oxygen nonstoichiometric in Li2MnO3: an alternative explanation for its anomalous electrochemical activity. Chem Mater 17:345–348

    Article  CAS  Google Scholar 

  14. Robertson AD, Bruce PG (2003) Mechanism of electrochemical activity in Li2MnO3. Chem Mater 15:1984–1992

    Article  CAS  Google Scholar 

  15. Yu DYU, Yanagida K, Kato Y, Nakamura H (2009) Electrochemical activities in Li2MnO3. J Electrochem Soc 156:A417–A424

    Article  CAS  Google Scholar 

  16. Yu DYW, Yanagida K (2011) Structural analysis of Li2MnO3 and related Li-Mn-O materials. J Electrochem Soc 158:A1015–A1022

    Article  CAS  Google Scholar 

  17. Massarotti V, Bini M, Capsoni D, Moliterni AGG (1997) Ab initio structure determination of Li2MnO3 from x-ray powder diffraction data. J Appl Cryst 30:123–127

    Article  CAS  Google Scholar 

  18. Penki TR, Shanmughasundaram D, Munichadraiah N (2013) Polymer template-assisted micro emulsion synthesis of large surface area, porous Li2MnO3 and its characterization as a positive electrode material of Li-ion cells. J Solid State Electro Chem 17:3125–3136

    Article  CAS  Google Scholar 

  19. Jina SW, Wadley HNG (2008) Lithium manganese oxide films fabricated by electron beam directed vapour deposition. J Vac Sci Technol A 26:114–122

    Article  Google Scholar 

  20. Deng J, Chung CY, Han X, Zhong Y, Wang Z, Zhou H (2013) Electrochemical properties of LiNi0.50Co0.25Mn0.25O2 thin film cathodes prepared by pulsed laser deposition. Int J Electrochem Sci 8:1770–1777

    CAS  Google Scholar 

  21. Chen CL, Chiu KF, Chen YR, Chen CC, Lin HC, Chiang HY (2013) High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process. Thin Solid Films 544:182–185

    Article  CAS  Google Scholar 

  22. Subramania A, Karthick SN, Angayarkanni N (2008) Preparation and electrochemical behaviour of LiMn2O4 thin film by spray pyrolysis method. Thin Solid Films 516:8295–8298

    Article  CAS  Google Scholar 

  23. Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering. J Power Sources 180:576–581

    Article  CAS  Google Scholar 

  24. Ehiasarian AP, Munz WD, Hultman L, Helmersson U, Kouznetsov V (2002) Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum 65:147–154

    Article  CAS  Google Scholar 

  25. Xin Z, Hui SX, Lin ZD (2010) Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films. Chin Phys B 19:086802

    Article  Google Scholar 

  26. Chen GLH, Zheng S, Lou F, Chen L, Zeng L, Zhang J, Yang QZC (2013) Effects of RF magnetron sputtering power density on NTC characteristics of Mn–Co–Ni thin films. J Mater Sci 24:1203–1207

    Google Scholar 

  27. Kim H, Horwitz JS, Kushto G, Piqué A, Kafafi ZH, Gilmore CM, Chrisey DB (2000) Effect of film thickness on the properties of indium tin oxide thin films. J App Phys 88:6021

    Article  CAS  Google Scholar 

  28. Zhou Y, Kelly PJ (2004) The properties of tin-doped indium oxide films prepared by pulsed magnetron sputtering from powder targets. Thin Solid Films 469:18–23

    Article  Google Scholar 

  29. Yellareswararao K, Shanmughasundaram D, Nimisha CS, Penki TR, Munichandraiah N, Mohan Rao G (2014) High capacity Li2−x MnO3−y thin films for battery applications. J Electrochem Soc 161:A28–A32

    Article  Google Scholar 

  30. Nimisha CS, Yellareswararao K, Venkatesh G, Munichandraiah N, Mohan Rao G (2011) Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications. Thin Solid Films 519:3401–3406

    Article  CAS  Google Scholar 

  31. Johnson CS, Korte SD, Vaughey JT, Thackeray MM, Bofinger TE, Shao-Horn Y, Hackney SA (1999) Structural and electrochemical analysis of layered compounds from Li2MnO3. J Power Sources 81–82:491–495

    Article  Google Scholar 

  32. Choi CH, Cho WI, Cho BW, Kim HS, Yoon YS, Taka YS (2002) Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films. Electrochem Solid State Lett 5:A14–A17

    Article  CAS  Google Scholar 

  33. Nimisha CS, Ganapathi M, Munichandraiah N, Mohan Rao G (2009) Studies on the target conditioning for deposition of LiCoO2 films. Vacuum 83:1001–1006

    Article  CAS  Google Scholar 

  34. Lee JH, Kim KJ (2013) Superior electrochemical properties of porous Mn2O3-coated LiMn2O4 thin-film cathodes for Li-ion micro batteries. Electrochim Acta 102:196–201

    Article  CAS  Google Scholar 

  35. Seredych M, Bandos TJ (2012) Evaluation of GO/MnO2 composites as super capacitors in neutral electrolytes: role of graphite oxide oxidation level. J Mater Chem 22:23525–23533

    Article  CAS  Google Scholar 

  36. Baggetto L, Dudney NJ, Veith GM (2013) Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochim Acta 90:135–147

    Article  CAS  Google Scholar 

  37. Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, BaggettoL DNJ, Shao-Horn ZLY (2012) In situ ambient pressure x-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Scientific Reports 2:715

    Google Scholar 

  38. Treuil N, Labrugere C, Menetrier M, Portier J, Campet G, Deshayes A, Frison JC, Hwang SJ, Song SW, Choy JH (1999) Relationship between chemical bonding nature and electrochemical property of LiMn2O4 spinel oxides with various particle sizes: “Electrochemical Grafting” concept. J Phys Chem B 103:2100–2106

  39. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M (2013) How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries. J Electrochem Soc 160:A542–A548

    Article  CAS  Google Scholar 

  40. Rowe AW, Dahn JR (2014) Positive electrode materials in the Li-Mn-Ni-O system exhibiting anomalous capacity growth during extended cycling. J Electrochem Soc 161:A308–A317

    Article  CAS  Google Scholar 

  41. Du W, Gupta A, Zhang X, Sastry AM, Shyy W (2010) Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int J Heat Mass Transfer 53:3552–3561

    Article  CAS  Google Scholar 

  42. Sinha NN, Munichandraiah N (2009) The effect of particle size on performance of cathode materials of Li-ion batteries. J Indian Inst Sci 89:381–392

    CAS  Google Scholar 

  43. Hwang I, Lee CW, Kim JC, Yoon S (2012) Particle size effect of Ni-rich cathode materials on lithium ion battery Performance. Mat Res Bull 47:73–78

    Article  CAS  Google Scholar 

  44. Dudney NJ, Bates JB, Zuhr RA, Young S, Robertson JD, Jun HP, Hackney SA (1999) Nano crystalline Li x Mn2−y O4 cathodes for solid state thin film rechargeable lithium batteries. J Electrochem Soc 146(7):2455–2464

  45. Park MH, Kim K, Kim J, Cho J (2010) Flexible dimensional control of high-capacity Li-ion-battery anodes: from 0D hollow to 3D porous germanium nanoparticle assemblies. Adv Mater 22:415–418

    Article  CAS  Google Scholar 

  46. Dudney NJ, Jang YI (2003) Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mm thick LiCoO2. J Power Sources 119:300–304

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Communication and Information Technology, Govt. of India under a grant for the Centre of Excellence in Nano electronics, Phase II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mohan Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.Y., Shanmughasundaram, D., Penki, T.R. et al. Effect of radio frequency power and thickness on the electrochemical properties of Li2−x MnO3−y thin films. J Solid State Electrochem 19, 703–713 (2015). https://doi.org/10.1007/s10008-014-2653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2653-2

Keywords

Navigation