Skip to main content
Log in

Pulse electropolymerization synthesis of PPy(DBS) nanoparticle layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A one-step process using a pulse electropolymerization technique is used to fabricate nanoparticles of polypyrrole (PPy) with dodecyl benzene sulfonate (DBS) anions from an aqueous solution without template and without using any chemical additives. The morphology of particles is controlled by changing the pulse duration (from 120 to 0.5 s), while keeping the relaxation time constant at 15 s. Short pulses resulted in the formation of PPy(DBS) nanoparticles with an average particle size of about 50 nm. The control of the size of the PPy(DBS) nanoparticles is ascribed to a pulse electropolymerization growth mechanism, whereby progressive nucleation associated with two-dimensional growth is initiated at each new pulse cycle from the equilibrium electrolyte solution. Short pulses are needed to avoid nonuniform growth of nanoparticles and control the particle size. Sufficiently long relaxation time is required to restore the equilibrium concentrations in the vicinity of the working electrode by suppressing the double layer. Combining short pulses with sufficiently long relaxation times enables the formation of PPy(DBS) nanoparticles. The proposed short-pulse technique is meant to be applied to the fabrication of a wide range of nanostructured conductive polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Liu Y, Poyraz S, Zhang X (2011) Chem Commun 47:4421–4423

    Article  CAS  Google Scholar 

  2. Lee KKC, Herman PR, Shoa T, Haque M, Madden JDW, Yang VXD (2012) Adv Mater 24:1243–1246

    Article  CAS  Google Scholar 

  3. Pecher J, Mecking S (2010) Chem Rev 110:6260–6279

    Article  CAS  Google Scholar 

  4. Kwon OS, Hong J, Park SJ, Jang Y, Jang J (2010) J Phys Chem C 114:18874–18879

    Article  CAS  Google Scholar 

  5. Zha Z, Yue X, Ren Q, Dai Z (2013) Adv Mater 25:777–782

    Article  CAS  Google Scholar 

  6. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z (2012) Adv Mater 24:5586–5592

    Article  CAS  Google Scholar 

  7. Au KM, Lu Z, Matcher SJ, Armes SP (2011) Adv Mater 23:5792–5795

    Article  CAS  Google Scholar 

  8. Jeon SS, Kim C, Ko J, Im SSJ (2011) Mater Chem 21:8146–8151

    Article  CAS  Google Scholar 

  9. Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S (2008) J Power Sources 181:172–176

    Article  CAS  Google Scholar 

  10. Jeon SS, Kim C, Ko J, Im SS (2011) J Phys Chem C 115:22035–22039

    Article  CAS  Google Scholar 

  11. West R, Zeng X (2008) Langmuir 24:11076–11081

    Article  CAS  Google Scholar 

  12. Bjorklund RB, Liedberg B (1986) J Chem Soc Chem Commun 16:1293–1295

    Article  Google Scholar 

  13. Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) J Mater Chem 22:3044–3052

    Article  CAS  Google Scholar 

  14. Nam D, Kim M, Lim S, Song I, Kwon H (2013) J Mater Chem A 1:8061–8068

    Article  CAS  Google Scholar 

  15. Kuwabata S, Nakamura J, Yoneyama H (1988) J Chem Soc Chem Commun 12:779–780

    Article  Google Scholar 

  16. Arkhipov VI, Heremans P (2005) Phys Rev B 71:045214-1-045214-7

  17. Bruckenstein S, Chen J, Jureviciute I, Hillman AR (2009) Electrochim Acta 54:3516–3525

    Article  CAS  Google Scholar 

  18. Bay L, Jacobsen T, Skaarup S (2001) J Phys Chem B 105:8492–8497

    Article  CAS  Google Scholar 

  19. Cao G (2003) Nanostructures and nanomaterials synthesis, properties and applications. Imperial College Press, London

    Google Scholar 

  20. Quant CA, Marla KT, Meredith JC (2008) Colloids Surf A: Physicochem Eng Asp 317:129–135

    Article  CAS  Google Scholar 

  21. Frutos FJG, Otero TF, Romero AJF (2007) Electrochim Acta 52:3621–3629

    Article  CAS  Google Scholar 

  22. Paisal R, Martinez R, Padilla J, Romero AJF (2011) Electrochim Acta 56:6345–6351

    Article  CAS  Google Scholar 

  23. Smela E, Gadegaard N (1999) Adv Mater 11:953–957

    Article  CAS  Google Scholar 

  24. Zheng W, Razal JM, Spinks GM, Truong V, Whitten PG, Wallace GG (2012) Langmuir 28:10891–10897

    Article  CAS  Google Scholar 

  25. Karami H, Asadi MG, Mansoori M (2012) Electrochim Acta 61:154–164

    Article  CAS  Google Scholar 

  26. Karimi H, Rahimi Nehzad A (2013) Int J Electrochem Sci 8:8905–8921

    Google Scholar 

  27. Xiao Y, Lin J, Wu J, Tai S, Yue G (2012) Electrochim Acta 83:221–226

    Article  CAS  Google Scholar 

  28. Sharma RK, Rastogi AC, Desu SB (2008) Electrochem Commun 10:268–272

  29. Castagno KRL, Dalmoro V, Azambuja DS (2011) Mater Chem Phys 130:721–726

    Article  CAS  Google Scholar 

  30. Crowley K, Cassidy J (2003) J Electroanal Chem 547:75–82

    Article  CAS  Google Scholar 

  31. Otero TF, Santos F (2008) Electrochim Acta 53:3166–3174

    Article  CAS  Google Scholar 

  32. Otero TF, Martinez JG (2011) J Solid State Electrochem 15:1169–1178

    Article  CAS  Google Scholar 

  33. Bade K, Sakova VT, Schultze JW (1992) Electrochim Acta 31:2255–2261

    Article  Google Scholar 

  34. Sadki S, Schottland P, Brodiec N, Sabouraud G (2000) Chem Soc Rev 29:283–293

    Article  Google Scholar 

  35. John R, Wallace GG (1991) J Electroanal Chem 306:157–167

  36. Hwang BJ, Santhanam R, Lin Y (2000) J Electrochem Soc 147:2252–2257

    Article  CAS  Google Scholar 

  37. Li F, Albery WJ (1992) Adv Mater 10:673–675

    Article  Google Scholar 

  38. Hwang BJ, Santhanam R, Lin YL (2001) Electrochim Acta 46:2843–2853

    Article  CAS  Google Scholar 

  39. Li F, Albery WJ (1992) Langmuir 8:1645–1653

    Article  CAS  Google Scholar 

  40. Li F, Albery WJ (1992) Electrochim Acta 37:393–401

    Article  CAS  Google Scholar 

  41. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research (25630019) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by JSPS Core-to-Core Program, Advanced Research Networks (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Delaunay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daryakenari, A.A., Apostoluk, A., Aradilla, D. et al. Pulse electropolymerization synthesis of PPy(DBS) nanoparticle layers. J Solid State Electrochem 19, 655–661 (2015). https://doi.org/10.1007/s10008-014-2647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2647-0

Keywords

Navigation