Skip to main content
Log in

Preparation of ferrocene-terminated layers by direct reaction with glassy carbon: a comparison of methods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Monolayers and sub-monolayers of ferrocene (Fc) groups were immobilised on glassy carbon by direct reactions of primary amine and carboxylic acid derivatives of Fc. Reaction of FcCH2NH2 with polished GC in acetonitrile at open circuit potential yielded grafted layers with surface coverages up to ∼70 % of a close-packed monolayer. The influence of the solvent and applied potential during the reaction was consistent with a Michael-like addition mechanism at the surface. When FcCH2NH2 was reacted with GC under conditions that promote amide bond formation, sub-monolayers of Fc groups were attached; however, the participation of the Michael-like addition reaction as the major immobilisation pathway could not be discounted. Activation of FcCOOH and FcCH2COOH with oxalyl chloride and reaction with polished GC gave surface coverages of Fc corresponding to ∼25 % of a close-packed monolayer. Ester bonds are assumed to form in these reactions. The modification methods investigated here are experimentally simple and are very suitable for use with high surface area carbons. Furthermore, they may be the method of choice for applications where multilayer coatings must be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. Belanger D, Pinson J (2011) Chem Soc Rev 40:3995–4048

    Article  CAS  Google Scholar 

  2. Downard AJ (2000) Electroanalysis 12:1085–1096

    Article  CAS  Google Scholar 

  3. Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Saveant J-M (1997) J Am Chem Soc 119:201–207

    Article  CAS  Google Scholar 

  4. Delamar M, Hitmi R, Pinson J, Saveant JM (1992) J Am Chem Soc 114:5883–5884

    Article  CAS  Google Scholar 

  5. Barriere F, Downard AJ (2008) J Solid State Electrochem 12:1231–1244

    Article  CAS  Google Scholar 

  6. Kariuki JK, McDermott MT (2001) Langmuir 17:5947–5951

    Article  CAS  Google Scholar 

  7. Brooksby PA, Downard AJ (2004) Langmuir 20:5038–5045

    Article  CAS  Google Scholar 

  8. Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S (2007) Chem Mater 19:4570–4575

    Article  CAS  Google Scholar 

  9. Chretien JM, Ghanem MA, Bartlett PN, Kilburn JD (2008) Chem Eur J 14:2548–2556

    Article  CAS  Google Scholar 

  10. Lee L, Ma H, Brooksby PA, Brown SA, Leroux YR, Hapiot P, Downard AJ (2014) Langmuir 30:7104–7111

    Article  CAS  Google Scholar 

  11. Leroux YR, Fei H, Noel JM, Roux C, Hapiot P (2010) J Am Chem Soc 132:14039–14041

    Article  CAS  Google Scholar 

  12. Malmos K, Dong MD, Pillai S, Kingshott P, Besenbacher F, Pedersen SU, Daasbjerg K (2009) J Am Chem Soc 131:4928–4936

    Article  CAS  Google Scholar 

  13. Nielsen LT, Vase KH, Dong MD, Besenbacher F, Pedersen SU, Daasbjerg K (2007) J Am Chem Soc 129:1888–1889

    Article  CAS  Google Scholar 

  14. Watkins BF, Behling JR, Kariv E, Miller LL (1975) J Am Chem Soc 97:3549–3550

    Article  CAS  Google Scholar 

  15. Firth BE, Miller LL, Mitani M, Rogers T, Lennox J, Murray RW (1976) J Am Chem Soc 98:8271–8272

    Article  CAS  Google Scholar 

  16. Bourdillon C, Bourgeois JP, Thomas D (1980) J Am Chem Soc 102:4231–4235

    Article  CAS  Google Scholar 

  17. Ianniello RM, Yacynych AM (1981) Anal Chem 53:2090–2095

    Article  CAS  Google Scholar 

  18. Yacynych AM, Kuwana T (1978) Anal Chem 50:640–645

    Article  CAS  Google Scholar 

  19. Elliott CM, Murray RW (1976) Anal Chem 48:1247–1254

    Article  CAS  Google Scholar 

  20. Tougas TP, Collier WG (1987) Anal Chem 59:2269–2272

    Article  CAS  Google Scholar 

  21. Fryling MA, Zhao J, McCreery RL (1995) Anal Chem 67:967–975

    Article  CAS  Google Scholar 

  22. Calvo EJ, Etchenique R, Danilowicz C, Diaz L (1996) Anal Chem 68:4186–4193

    Article  CAS  Google Scholar 

  23. Molina A, Soto CM, Gonzalez J (2009) Anal Chem 81:6830–6836

    Article  CAS  Google Scholar 

  24. Blonder R, Katz E, Cohen Y, Itzhak N, Riklin A, Willner I (1996) Anal Chem 68:3151–3157

    Article  CAS  Google Scholar 

  25. Driscoll PF, Deunf E, Rubin L, Arnold J, Kerr JB (2013) J Electrochem Soc 160:G3152–G3158

    Article  CAS  Google Scholar 

  26. Chidsey CED (1991) Science 251:919–922

    Article  CAS  Google Scholar 

  27. Smalley JF, Finklea HO, Chidsey CED, Linford MR, Creager SE, Ferraris JP, Chalfant K, Zawodzinsk T, Feldberg SW, Newton MD (2003) J Am Chem Soc 125:2004–2013

    Article  CAS  Google Scholar 

  28. Buttry DA, Peng JCM, Donnet JB, Rebouillat S (1999) Carbon 37:1929–1940

    Article  CAS  Google Scholar 

  29. Gallardo I, Pinson J, Vila N (2006) J Phys Chem B 110:19521–19529

    Article  CAS  Google Scholar 

  30. Liu YC, McCreery RL (1995) J Am Chem Soc 117:11254–11259

    Article  CAS  Google Scholar 

  31. Sivanesan A, John SA (2009) Electrochim Acta 54:7458–7463

    Article  CAS  Google Scholar 

  32. Smith RDL, Pickup PG (2009) Electrochem Commun 11:10–13

    Article  CAS  Google Scholar 

  33. Gautier C, Ghodbane O, Wayner DDM, Belanger D (2009) Electrochim Acta 54:6327–6334

    Article  CAS  Google Scholar 

  34. Chidsey CED, Bertozzi CR, Putvinski TM, Mujsce AM (1990) J Am Chem Soc 112:4301–4306

    Article  CAS  Google Scholar 

  35. McDermott MT, Kneten K, McCreery RL (1992) J Phys Chem 96:3124–3130

    Article  CAS  Google Scholar 

  36. Pontikos NM, McCreery RL (1992) J Electroanal Chem 324:229–242

    Article  CAS  Google Scholar 

  37. Baramee A, Coppin A, Mortuaire M, Pelinski L, Tomavo S, Brocard J (2006) Biorg Med Chem 14:1294–1302

    Article  CAS  Google Scholar 

  38. Noël J-M, Sjöberg B, Marsac R, Zigah D, Bergamini J-F, Wang A, Rigaut S, Hapiot P, Lagrost C (2009) Langmuir 25:12742–12749

    Article  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. John Wiley, New York

    Google Scholar 

  40. Xu XY, Feng Y, Li JJ, Li F, Yu HJ (2010) Biosens Bioelectron 25:2324–2328

    Article  CAS  Google Scholar 

  41. McCreery RL (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  42. Cabaniss GE, Diamantis AA, Murphy WR, Linton RW, Meyer TJ (1985) J Am Chem Soc 107:1845–1853

    Article  CAS  Google Scholar 

  43. Kamau GN, Willis WS, Rusling JF (1985) Anal Chem 57:545–551

    Article  CAS  Google Scholar 

  44. Sundberg KM, Smyrl WH, Atanasoska L, Atanasoski R (1989) J Electrochem Soc 136:434–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MacDiarmid Institute for Advanced Materials and Nanotechnology. Lita Lee thanks the MacDiarmid Institute for a doctoral scholarship. We thank Professor Richard McCreery for helpful discussions and thank Dr. John Loring for use of Linkfit curve fitting software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison J. Downard.

Additional information

Dedicated to Professor Stephen Fletcher on the occasion of his 65th birthday. Happy birthday to an inspirational teacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, L., Downard, A.J. Preparation of ferrocene-terminated layers by direct reaction with glassy carbon: a comparison of methods. J Solid State Electrochem 18, 3369–3378 (2014). https://doi.org/10.1007/s10008-014-2615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2615-8

Keywords

Navigation