Skip to main content
Log in

Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Homogeneously distributed self-assembling graphene aerogel/gold nanoparticle (GA/GNs) hybrid materials with three-dimensional (3D) interconnected pores were fabricated through a simple hydrothermal route. A highly sensitive glucose oxidase (GOD) sensor is then developed based on the GA/GN hybrid materials. The obtained porous structure of the GA/GNs hybrid favored high-density immobilization of the enzyme and penetration of water-soluble molecules, which provided a biocompatible sensing platform for GOD immobilization. This GOD biosensor exhibits remarkable sensitivity (257.60 μA · mM−1 · cm−2), an approximate linear detection range of glucose concentration (50 μmol · L−1 to 450 μmol · L−1), and a detection limit of 0.597 μmol · L−1. These results indicate that the in situ encapsulation of different nanomaterials into a 3D graphene aerogel framework can enable the fabrication of a series of graphene-based 3D porous materials with promising applications.

We have demonstrated a novel glucose sensor based on porous structure of the GA/GNs hybrid, which favored high-density immobilization of the enzyme, penetration of water-soluble molecules, and providing a biocompatible sensing platform for GOD immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  3. Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Biomaterials 33:1090–1096

    Article  CAS  Google Scholar 

  4. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Adv Mater 21:3159–3164

    Article  CAS  Google Scholar 

  5. Wang Y, Lu J, Tang L, Chang H, Li J (2009) Anal Chem 81:9710–9715

    Article  CAS  Google Scholar 

  6. Chaturvedi P, Vanegas DC, Taguchi M, Burrs SL, Sharma P, McLamore ES (2014) Biosens Bioelectron 58:179–85

    Article  CAS  Google Scholar 

  7. Karuppiah C, Palanisamy S, Chen SM, Veeramani V, Periakaruppan P (2014) Sens Actuators B 196:450–456

    Article  CAS  Google Scholar 

  8. Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) Biosens Bioelectron 56:77–82

    Article  CAS  Google Scholar 

  9. Devadoss A, Sudhagar P, Das S, Lee SY, Terashima C, Nakata K, Fujishima A, Choi W, Kang YS, Paik U (2014) Acs Appl Mater Interfaces 6:4864–4871

    Article  CAS  Google Scholar 

  10. Yang P, Wang L, Wu Q, Chen Z, Lin X (2014) Sens Actuators B 194:71–78

    Article  CAS  Google Scholar 

  11. Shervedani RK, Amini A (2014) Electrochim Acta 121:376–385

    Article  CAS  Google Scholar 

  12. Wu X, Li R, Li Z (2014) Rsc Advances 4:9935–9941

    Article  CAS  Google Scholar 

  13. Bai L, Yan B, Chai Y, Yuan R, Yuan Y, Xie S, Jiang L, He Y (2013) Analyst 138:6595–6599

    Article  CAS  Google Scholar 

  14. Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) Anal Chim Acta 709:47–53

    Article  CAS  Google Scholar 

  15. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Biosens Bioelectron 25:1070–1074

    Article  CAS  Google Scholar 

  16. Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) Biosens Bioelectron 26:3500–3504

    Article  CAS  Google Scholar 

  17. Wang L, Zhu H, Hou H, Zhang Z, Xiao X, Song Y (2012) J Solid State Electrochem 16:1693–1700

    Article  CAS  Google Scholar 

  18. Wang X, Zhang X (2013) Electrochim Acta 112:774–782

    Article  CAS  Google Scholar 

  19. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Acs Nano 7:3540–3546

    Article  CAS  Google Scholar 

  20. Qin XY, Lu WB, Asiri AM, Al-Youbi AO, Sun XP (2013) Catal Sci Tech 3:1027–1035

    Article  CAS  Google Scholar 

  21. Wang Y, Li H, Kong J (2014) Sens Actuators B 193:708–714

    Article  CAS  Google Scholar 

  22. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Biosens Bioelectron 52:147–152

    Article  CAS  Google Scholar 

  23. Zhang X, Liao Q, Chu M, Liu S, Zhang Y (2014) Biosens Bioelectron 52:281–287

    Article  CAS  Google Scholar 

  24. Liu J, Lv W, Wei W, Zhang C, Li Z, Li B, Kang F, Yang QH (2014) J Mater Chem A 2:3031–3037

    Article  CAS  Google Scholar 

  25. Feng C, Xu G, Liu H, Lv J, Zheng Z, Wu Y (2014) J Electrochem Soc 161:B1–B8

    Article  CAS  Google Scholar 

  26. Lv W, Jin FM, Guo Q, Yang QH, Kang F (2012) Electrochim Acta 73:129–135

    Article  CAS  Google Scholar 

  27. Xu Z, Zhang Y, Li P, Gao C (2012) Acs Nano 6:7103–7113

    Article  CAS  Google Scholar 

  28. Ji CC, Xu MW, Bao SJ, Cai CJ, Lu ZJ, Chai H, Yang F, Wei H (2013) J Colloid Interface Sci 407:416–424

    Article  CAS  Google Scholar 

  29. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Muellen K (2012) J Am Chem Soc 134:9082–9085

    Article  CAS  Google Scholar 

  30. Xu Y, Sheng K, Li C, Shi G (2010) Acs Nano 4:4324–4330

    Article  CAS  Google Scholar 

  31. Qian J, Yan S, Xiao Z (2012) J Colloid Interface Sci 366:130–134

    Article  CAS  Google Scholar 

  32. Personick ML, Mirkin CA (2013) J Am Chem Soc 135:18238–18247

    Article  CAS  Google Scholar 

  33. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Adv Mater 252:219–2223

    Article  Google Scholar 

  34. Hu Y, Jin J, Wu P, Zhang H, Cai C (2010) Electrochim Acta 56:491–500

    Article  CAS  Google Scholar 

  35. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  36. Liu X, Hu Q, Wu Q, Zhang W, Fang Z, Xie Q (2009) Colloids Surf B 74:154–158

    Article  CAS  Google Scholar 

  37. Sanghavi BJ, Srivastava AK (2011) Anal Chim Acta 706:246–254

    Article  CAS  Google Scholar 

  38. Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013) Anal Chem 85:8158–8165

    Article  CAS  Google Scholar 

  39. Sanghavi BJ, Varhue W, Chávez JL, Chou CF, Swami NS (2014) Anal Chem 86:4120–5125

    Article  CAS  Google Scholar 

  40. Zhou K, Zhu Y, Yang X, Li C (2010) Electroanal 22:259–264

    Article  Google Scholar 

  41. Yang MH, Choi BG, Park H, Park TJ, Hong WH, Lee SY (2011) Electroanal 23:850–857

    Article  Google Scholar 

  42. Zheng J, He Y, Sheng Q, Zhang H (2011) J Mater Chem 21:12873–12879

    Article  CAS  Google Scholar 

  43. Li SJ, Chen TW, Xia N, Hou YL, Du JJ, Liu L (2013) J Solid State Electrochem 17:2487–2494

    Article  CAS  Google Scholar 

  44. Chen HC, Tsai RY, Chen YH, Lee RS, Hua MY (2013) Anal Chim Acta 792:101–109

    Article  CAS  Google Scholar 

  45. Gutes A, Carraro C, Maboudian R (2012) Biosens Bioelectron 33:56–59

    Article  CAS  Google Scholar 

  46. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Biosens Bioelectron 29:159–166

    Article  CAS  Google Scholar 

  47. Zhong X, Yuan R, Chai YQ (2012) Sens Actuators B 162:334–340

    Article  CAS  Google Scholar 

  48. Zhu N, Han S, Gan S, Ulstrup J, Chi Q (2013) Adv Funct Mater 23:5297–5306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program: 2013CB932903), the National Science Foundations of China (No. 61205057), China Postdoctoral Science special Foundation (2012 T50488), China Postdoctoral Science Foundation (2011 M500896), Jiangsu Planned Projects for Postdoctoral Research Funds (1102015C), Natural Science Foundation of Education Bureau of Jiangsu Province (12KJB180009), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY213184), and the open research fund of Key Laboratory of MEMS of Ministry of Education, Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shancheng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yan, S. & Shi, Y. Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19, 307–314 (2015). https://doi.org/10.1007/s10008-014-2608-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2608-7

Keywords

Navigation