Skip to main content
Log in

Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Commercially activated carbons are known for their high specific surface areas and low pack densities, thus giving a poor volumetric capacitance for supercapacitors. Here, nonporous pyrolyzed graphite oxides with high pack densities and controllable graphitic structures were prepared through a facile oxidation-heat treatment. XRD, Raman, SEM, and TEM were used to characterize the textural properties and morphologies of these materials. Galvanostatic charge–discharge and cyclic voltammetry revealed that the voltage-driven electrochemical ion intercalation process is, in fact, highly dependent on the graphitic structure. Less graphitized materials with larger interlayer spacings are more easily electrochemically activated, while a more rigid graphitic structure proves to be more difficult. After adequate electrochemical activation, abundant ion-accessible sites were created for charge storage, and the cell-specific capacitance dramatically increased from 3.5 to 23 F/g. The intercalation behaviors of TEA+ and BF4 were separately studied. The results revealed that, due to its smaller anion size, BF4 displayed superior intercalation capability as well as higher specific capacitance on the positively polarized electrode after electrochemical activation. Therefore, through optimizing the graphitic structure and the EA conditions, a high volumetric capacitance can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2013) Acc Chem Res 46:1094–1103

    Article  CAS  Google Scholar 

  2. Lei ZB, Christov N, Zhao XS (2011) Energy Environ Sci 4:1866–1873

    Article  CAS  Google Scholar 

  3. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387–392

    Article  CAS  Google Scholar 

  4. Ma XM, Liu MX, Gan LH, Zhao YH, Chen LW (2013) J Solid State Electrochem 17:2293–2301

    Article  CAS  Google Scholar 

  5. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Nat Mater 10:424–428

    Article  CAS  Google Scholar 

  6. Shim YS, Kim HJ, Jung Y (2012) Faraday Discuss 154:249–263

    Article  CAS  Google Scholar 

  7. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E (2005) Chem Phys Lett 404:53–58

    Article  CAS  Google Scholar 

  8. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mater 19:438–447

    Article  CAS  Google Scholar 

  9. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  CAS  Google Scholar 

  10. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Carbon 43:1303–1310

    Article  CAS  Google Scholar 

  11. Gogotsi Y, Simon P (2011) Science 334:917–918

    Article  CAS  Google Scholar 

  12. Ramadoss A, Kim SJ (2013) Carbon 63:434–445

    Article  CAS  Google Scholar 

  13. Wang K, Huang JY, Wei ZX (2010) J Phys Chem C 114:8062–8067

    Article  CAS  Google Scholar 

  14. Azaïs P, Duclaux L, Florian P, Massiot D, Lillo-Rodenas MA, Linares-Solano A, Peres JP, Jehoulet C, Béguin F (2007) J Power Sources 171:1046–1053

    Article  Google Scholar 

  15. Takeuchi M, Koike K, Maruyama T, Mogami A, Okamura M (1998) Denki Kagaku Oyobi Kogyo Butsuri Kagaku 66:1311–1317

    CAS  Google Scholar 

  16. Nakamura H, Okamura M (2003) In: Proceeding of the 13th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices 215

  17. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Science 341:1502–1505

    Article  CAS  Google Scholar 

  18. Ka BH, Oh SM (2008) J Electrochem Soc 155:A685–A692

    Article  CAS  Google Scholar 

  19. Ruch PW, Hahn M, Rosciano M, Holzapfel M, Kaiser H, Scheifele W, Schmitt B, Novák P, Kötz R, Wokaun A (2007) Electrochim Acta 53:1074–1082

    Article  CAS  Google Scholar 

  20. Zheng H, Jiang K, Abe T, Ogumi Z (2006) Carbon 44:203–210

    Article  CAS  Google Scholar 

  21. Dahn J, Fong R, Spoon M (1990) Phys Rev B 42:6424–6432

    Article  CAS  Google Scholar 

  22. Billaud D, Pron A, Lincoln Vogel F, Hérold A (1980) Mater Res Bull 15:1627–1634

    Article  CAS  Google Scholar 

  23. Santhanam R, Noel M (1997) J Power Sources 66:47–54

    Article  CAS  Google Scholar 

  24. Hardwick LJ, Hahn M, Ruch P, Holzapfel M, Scheifele W, Buqa H, Krumeich F, Novák P, Kötz R (2006) Electrochim Acta 52:675–680

    Article  CAS  Google Scholar 

  25. Campana FP, Hahn M, Foelske A, Ruch P, Kötz R, Siegenthaler H (2006) Electrochem Commun 8:1363–1368

    Article  CAS  Google Scholar 

  26. Oren Y, Soffer A (1986) J Electroanal Chem Interfacial Electrochem 206:101–114

    Article  CAS  Google Scholar 

  27. Oren Y, Soffer A (1985) J Electroanal Chem Interfacial Electrochem 186:63–77

    Article  CAS  Google Scholar 

  28. Randin JP, Yeager E (1975) J Electroanal Chem Interfacial Electrochem 58:313–322

    Article  CAS  Google Scholar 

  29. Randin JP, Yeager E (1972) J Electroanal Chem Interfacial Electrochem 36:257–276

    Article  CAS  Google Scholar 

  30. Mitani S, Lee SI, Saito K, Korai Y, Mochida I (2006) Electrochim Acta 51:5487–5493

    Article  CAS  Google Scholar 

  31. Mitani S, Lee SI, Saito K, Yoon SH, Korai Y, Mochida I (2005) Carbon 43:2960–2967

    Article  CAS  Google Scholar 

  32. Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R (2013) Electrochem Commun 34:189–191

    Article  CAS  Google Scholar 

  33. Ruch PW, Cericola D, Hahn M, Kötz R, Wokaun A (2009) J Electroanal Chem 636:128–131

    Article  CAS  Google Scholar 

  34. Lengyel M, Atlas G, Elhassid D, Luo PY, Zhang X, Belharouak I, Axelbaum RL (2014) J Power Sources 262:286–296

    Article  CAS  Google Scholar 

  35. Hoffman EN, Yushin G, Barsoum MW, Gogotsi Y (2005) Chem Mater 17:2317–2322

    Article  CAS  Google Scholar 

  36. Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Electrochim Acta 53:2210–2216

    Article  CAS  Google Scholar 

  37. Hahn M, Barbieri O, Campana FP, Kötz R, Gallay R (2005) Appl Phys A 82:633–638

    Article  Google Scholar 

  38. Hahn M, Barbieri O, Gallay R, Kötz R (2006) Carbon 44:2523–2533

    Article  CAS  Google Scholar 

  39. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  40. Tan J, Liu L, Hu H, Yang Z, Guo H, Wei Q, Yi X, Yan Z, Zhou Q, Huang Z, Shu H, Yang X, Wang X (2014) J Power Sources 251:75–84

    Article  CAS  Google Scholar 

  41. Guo B, Yu X, Sun XG, Chi M, Qiao ZA, Liu J, Hu YS, Yang XQ, Goodenough JB, Dai S (2014) Energy Environ Sci. doi:10.1039/C4EE00508B

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by MOST (2014CB239702), National Science Foundation of China (no. 51302083, no. 51172071, no. 51272077), Fundamental Research Funds for the Central Universities, Shanghai Pujiang Program, and Program of Shanghai Subject Chief Scientist (B type, no 13XD1424900). Chuanfang Zhang acknowledges the financial support of Chinese Scholarship Council. Zheng Ling is thanked for useful discussions. Prof. Yury Gogotsi (Drexel University) is acknowledged for manuscript revision and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghui Long or Wenming Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xie, Y., Wang, J. et al. Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. J Solid State Electrochem 18, 2673–2682 (2014). https://doi.org/10.1007/s10008-014-2527-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2527-7

Keywords

Navigation