Skip to main content
Log in

Reason analysis for Graphite-Si/SiOx/C composite anode cycle fading and cycle improvement with PI binder

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Designed Graphite-Si/SiOx/C composite electrodes for rechargeable lithium-ion batteries are prepared with different binder of carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR) and polyimide (PI). Electrode performance of composites highly depends on the selection of binder. The Si-based/graphite composite electrode containing PI binder shows very stable cycle stability with the retention higher than 95 % after 30 cycles; however, the capacity of composite electrode with CMC-SBR binder fades to less than 80 % after 20 cycles. The improvement mechanism of PI binder is characterized by SEM, EDS mapping, adhesive strength test, and electric performance test. The surface of anode film does not show crack after several cycles, and the SEI on the surface of Si/SiOx/C particle is characterized. It is found that anode film peeing off strength matches well with the composite cycle stability. This result is further supported with cell disassembly result. We believe that improvement of anode film adhesion strength is an effective way to get stable long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shukla AK, Kumar TP (2008) Curr Sci 94:314–331

    CAS  Google Scholar 

  2. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  3. Gao B, Sinha S, Fleming L, Zhou O (2001) Adv Mater 13:816–819

    Article  CAS  Google Scholar 

  4. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Electrochem Solid State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  5. Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  6. Yang J, Winter M, Besenhard JO (1996) Solid State Ionics 90:281–284

    Article  CAS  Google Scholar 

  7. Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  8. Li T, Cao YL, Ai XP, Yang HX (2008) J Power Sources 184:473–476

    Article  CAS  Google Scholar 

  9. Lee JM, Jung H, Hwa Y, Kim H, Im D, Doo SG, Sohn HJ (2010) J Power Sources 195:5044–5048

    Article  CAS  Google Scholar 

  10. Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM (2008) J Power Sources 176:353–358

    Article  CAS  Google Scholar 

  11. Chen ZH, Christensen L, Dahn JR (2003) Electrochem Commun 5:919–923

    Article  CAS  Google Scholar 

  12. Liu WR, Yang MH, Wu HC, Chiao SM, Wu NL (2005) Electrochem Solid State Lett 8(2):A100–A103

    Article  CAS  Google Scholar 

  13. Li J, Lewis RB, Dahn JR (2007) Elecchem Solid-State Lett 10:A17–A20

    Article  CAS  Google Scholar 

  14. Chen LB, Wang K, Xie XH (2007) J Power Sources 174:538–544

    Article  CAS  Google Scholar 

  15. Choi NS, Yew KH, Lee YY, Sung M, Kim H, Kim SS (2006) J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  16. Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K (2004) J Power Sources 129:96–100

    Article  CAS  Google Scholar 

  17. Moon T, Kim C, Park B (2006) J Power Sources 155:391–394

    Article  CAS  Google Scholar 

  18. Hu YS, Cakan RD, Titirici MM, Muller JO, Schlogl R, Antonietti M, Maier J (2008) Angew Chem Int Ed 47:1645–1649

    Article  CAS  Google Scholar 

  19. Morita T, Takami N (2006) J Electrochem Soc 153(2):A425–A430

    Article  CAS  Google Scholar 

  20. Kim H, Choi J, Sohn HJ, Kang T (1999) J Electrochem Soc 146:4401–4405

    Article  CAS  Google Scholar 

  21. Yang J, Wachtler M, Winter M, Besenhard JO (1999) Electrochem Solid-State Lett 2:161–163

    Article  CAS  Google Scholar 

  22. Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey JT, Thackeray MM, Edstrom K (2007) Electrochim Acta 52:4947–4955

    Article  CAS  Google Scholar 

  23. Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL (2014) Electrochim Acta 15:16–21

    Google Scholar 

  24. Guerfi A, Charest P, Dontigny M, Trottier J, Lagace M, Hovington P, Vijh A, Zaghib K (2011) J Power Sources 196:5667–5673

    Article  CAS  Google Scholar 

  25. Choi JW, MaDonough J, Jeong S, Yoo JS, Chan CK, Cui Y (2010) Nano Lett 10:1409–1413

    Article  CAS  Google Scholar 

  26. Han GB, Ryou MH, Cho KY, Lee YM, Park JK (2010) J Power Sources 195:3709–3714

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the NSFC Grant (No. 51172077) supported through NSFC Committee of China, and the Foundation of No. S2011020000521 supported through the Science and Technology Bureau of Guangdong Government. Here, I would like to give my special thanks to NingDe Amperex Technology Limited Cop. and TDK analytical group in Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenggang Zhao or Yanming Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Q., Zhao, F., Zhao, Y. et al. Reason analysis for Graphite-Si/SiOx/C composite anode cycle fading and cycle improvement with PI binder. J Solid State Electrochem 18, 2167–2174 (2014). https://doi.org/10.1007/s10008-014-2452-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2452-9

Keywords

Navigation