Skip to main content
Log in

Understanding the electrochemical differences of Pt doped and Pt supported over CeO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pt supported over CeO2 (Pt on CeO2) and Pt doped CeO2 (Pt in CeO2) are synthesized using chemical reduction and solution combustion method. In chemical reduction two different reducing agents are used namely; hydrazine hydrate and formaldehyde giving Pt supported over CeO2. Solution combustion method is used to prepare Pt doped CeO2. Detailed characterization using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurement and transmission electron microscopy (TEM) is carried out to distinguish the Pt supported and doped compounds. XRD and TEM results have clearly shown the differences in the structure and morphology, however, BET results do not show significant differences. Further, electrochemical measurements are performed in neutral medium to differentiate the electrochemical activity. Cyclic voltammetry (CV) indeed shows noticeable differences between Pt supported over CeO2 and Pt doped CeO2. CeO2 alone has also shown different electrochemical behavior compared to the Pt containing CeO2. Considering oxygen evolution reaction (OER) as a model reaction, Tafel slope measurements are performed for CeO2, Pt supported over CeO2 and Pt doped CeO2 to observe the differences. It was noted that CeO2 and Pt doped CeO2 showed similar Tafel slope indicating the same mechanism, while Pt supported over CeO2 showed different Tafel slopes, hence the different mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Porter NS, Wu H, Quan Z, Fang J (2013) Acc Chem Res ASAP. doi:10.1021/ar3002238

    Google Scholar 

  2. Hamnett A (1997) Catal Today 38(4):445–457

    Article  CAS  Google Scholar 

  3. Tian N, Zhou Z-Y, Sun S-G (2008) J Phys Chem C 112(50):19801–19817

    Article  CAS  Google Scholar 

  4. Korzeniewski C, Climent V, Feliu JM (2012) Electroanal Chem A Ser Adv 24:75–169

    Article  CAS  Google Scholar 

  5. John J, Wang H, Rus ED, Abruna HD (2012) J Phys Chem C 116(9):5810–5820

    Article  CAS  Google Scholar 

  6. Santasalo-Aarnio A, Tuomi S, Jalkanen K, Kontturi K, Kallio T (2013) Electrochim Acta 87:730–738

    Article  CAS  Google Scholar 

  7. Leger JM, Fonseca I, Bento F, Lopes I (1990) J Electroanal Chem Interfacial Electrochem 285(1–2):125–131

    Article  CAS  Google Scholar 

  8. Clavilier J, Parsons R, Durand R, Lamy C, Leger JM (1981) J Electroanal Chem Interfacial Electrochem 124(1–2):321–326

    Article  CAS  Google Scholar 

  9. Tang Y, Cheng W (2012) Sci Adv Mater 4(8):784–797

    Article  CAS  Google Scholar 

  10. Li N-H, Sun S-G, Chen S-P (1997) J Electroanal Chem 430(1–2):57–67

    Article  CAS  Google Scholar 

  11. Burke LD, Collins JA, Horgan MA, Hurley LM, O'Mullane AP (2000) Electrochim Acta 45(25–26):4127–4134

    Article  CAS  Google Scholar 

  12. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196(2):293–301

    Article  CAS  Google Scholar 

  13. Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Electrochim Acta 47(22–23):3707–3714

    Article  CAS  Google Scholar 

  14. Park K-W, Sung Y-E, Han S, Yun Y, Hyeon T (2003) J Phys Chem B 108(3):939–944

    Article  Google Scholar 

  15. Shao Y, Liu J, Wang Y, Lin Y (2009) J Mater Chem 19(1):46–59

    Article  CAS  Google Scholar 

  16. Lee K-S, Park I-S, Cho Y-H, Jung D-S, Jung N, Park H-Y, Sung Y-E (2008) J Catal 258(1):143–152

    Article  CAS  Google Scholar 

  17. Rajalakshmi N, Lakshmi N, Dhathathreyan KS (2008) Int J Hydrogen Energy 33(24):7521–7526

    Article  CAS  Google Scholar 

  18. Carbonio RE, Fierro C, Tryk D, Scherson D, Yeager E (1988) J Power Sources 22(3–4):387–398

    Article  CAS  Google Scholar 

  19. White JH, Sammells AF (1993) J Electrochem Soc 140(8):2167–2177

    Article  CAS  Google Scholar 

  20. Sun C, Li H, Chen L (2012) Energ Environ Sci 5(9):8475–8505

    Article  CAS  Google Scholar 

  21. Di Monte R, Kaspar J (2005) Catal Today 100(1–2):27–35

    Article  Google Scholar 

  22. Sharma S, Hegde MS, Das RN, Pandey M (2008) Appl Catal A Gen 337(2):130–137

    Article  CAS  Google Scholar 

  23. Xu C, Zeng R, Shen PK, Wei Z (2005) Electrochim Acta 51(6):1031–1035

    Article  CAS  Google Scholar 

  24. Masuda T, Fukumitsu H, Fugane K, Togasaki H, Matsumura D, Tamura K, Nishihata Y, Yoshikawa H, Kobayashi K, Mori T, Uosaki K (2010) J Phys Chem C 116(18):10098–10102

    Article  Google Scholar 

  25. Zhang D, Du X, Shi L, Gao R (2012) Dalton Trans 41(48):14455–14475

    Article  CAS  Google Scholar 

  26. Xu H, Hou X (2007) Int J Hydrogen Energy 32(17):4397–4401

    Article  CAS  Google Scholar 

  27. Xu C, Shen PK (2005) J Power Sources 142(1–2):27–29

    Article  CAS  Google Scholar 

  28. Sharma S, Singh P, Hegde MS (2011) J Solid State Electrochem 15(10):2185–2197

    Article  CAS  Google Scholar 

  29. Gorte RJ, Zhao S (2005) Catal Today 104(1):18–24

    Article  CAS  Google Scholar 

  30. Sharma S, Hegde MS (2009) J Chem Phys 130(11):114706–114708

    Article  Google Scholar 

  31. Trovarelli A (1996) Catal Rev 38(4):439–520

    Article  CAS  Google Scholar 

  32. Golunski SE, Hatcher HA, Rajaram RR, Truex TJ (1995) App Catal B Environ 5(4):367–376

    Article  CAS  Google Scholar 

  33. Yeung CMY, Tsang SC (2009) J Phys Chem C 113(15):6074–6087

    Article  CAS  Google Scholar 

  34. Sepulveda-Escribano A, Coloma F, Rodriguez-Reinoso F (1998) J Catal 178(2):649–657

    Article  CAS  Google Scholar 

  35. Bera P, Gayen A, Hegde MS, Lalla NP, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107(25):6122–6130

    Article  CAS  Google Scholar 

  36. Sharma S, Deshpande PA, Hegde MS, Madras G (2009) Ind Eng Chem Res 48(14):6535–6543

    Article  CAS  Google Scholar 

  37. Bera P, Malwadkar S, Gayen A, Satyanarayana CVV, Rao BS, Hegde MS (2004) Catal Lett 96(3–4):213–219

    Article  CAS  Google Scholar 

  38. Göhlich M, Böttcher S, Räuchle K, Reschetilowski W (2011) Catal Comm 12(8):757–760

    Article  Google Scholar 

  39. Li H, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2010) ACS App Mater Interfaces 2(3):838–846

    Article  CAS  Google Scholar 

  40. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18(14):3249–3256

    Article  CAS  Google Scholar 

  41. Baidya T, Gayen A, Hegde MS, Ravishankar N, Dupont L (2006) J Phys Chem B 110(11):5262–5272

    Article  CAS  Google Scholar 

  42. Sharma S, Mukri BD, Hegde MS (2011) Dalton Trans 40(43):11480–11489

    Article  CAS  Google Scholar 

  43. Hegde MS, Madras G, Patil KC (2009) Acc Chem Res 42(6):704–712

    Article  CAS  Google Scholar 

  44. Tang W, Hu Z, Wang M, Stucky GD, Metiu H, McFarland EW (2010) J Catal 273(2):125–137

    Article  CAS  Google Scholar 

  45. Coutanceau C, Brimaud S, Lamy C, Leger J-M, Dubau L, Rousseau S, Vigier F (2008) Electrochim Acta 53(23):6865–6880

    Article  CAS  Google Scholar 

  46. Liang H, Raitano J, He G, Akey A, Herman I, Zhang L, Chan S-W (2012) J Mater Sci 47(1):299–307

    Article  CAS  Google Scholar 

  47. Bera P, Priolkar KR, Gayen A, Sarode PR, Hegde MS, Emura S, Kumashiro R, Jayaram V, Subbanna GN (2003) Chem Mater 15(10):2049–2060

    Article  CAS  Google Scholar 

  48. Zhang N, Fu X, Xu Y-J (2011) J Mater Chem 21(22):8152–8158

    Article  CAS  Google Scholar 

  49. Yu T, Zeng J, Lim B, Xia Y (2010) Adv Mater 22(45):5188–5192

    Article  CAS  Google Scholar 

  50. Dobrzanski LA, Pawlyta M, Krzton A, Liszka B, Labisz K (2010) J Achiev Mater Manuf Eng 39(2):184–189

    Google Scholar 

  51. Schmid G (ed) (2004) Nanoparticles: From Theory to Application. 1st edn, Essen

  52. Halder A, Sharma S, Hegde MS, Ravishankar N (2009) J Phys Chem C 113(4):1466–1473

    Article  CAS  Google Scholar 

  53. Naseh MV, Khodadadi AA, Mortazavi Y, Sahraei OA, Pourfayaz F, Sedghi SM (2009) Int J Chem BioEng 2(2):66–68

    Google Scholar 

  54. Pozdnyakova O, Teschner D, Wootsch A, Kröhnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paál Z, Schlögl R (2006) J Catal 237(1):17–28

    Article  CAS  Google Scholar 

  55. Pozdnyakova O, Teschner D, Wootsch A, Kröhnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paál Z, Schlögl R (2006) J Catal 237(1):1–16

    Article  CAS  Google Scholar 

  56. Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278(2):297–309

    Article  CAS  Google Scholar 

  57. Halsey G (1948) J Chem Phys 16:931

    Article  CAS  Google Scholar 

  58. Merki D, Fierro S, Vrubel H, Hu X (2011) Chem Sci 2(7):1262–1267

    Article  CAS  Google Scholar 

  59. Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials: Combustion synthesis, properties and applications, 1st edn. World Scientific Publishing Company, Bangalore

    Book  Google Scholar 

  60. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109(30):14433–14440

    Article  CAS  Google Scholar 

  61. Godínez-Salomon F, Arce-Estrada E, Hallen-Lopez M (2012) Int J Electrochem Sci 7:2566–2576

    Google Scholar 

  62. Slavinskaya EM, Gulyaev RV, Stonkus OA, Zadesenets AV, Plyusnin PE, Shubin YV, Korenev SV, Ivanova AS, Zaikovskiia VI, Danilova IG, Boronina AI (2011) Kinet Catal 52(2):282–295

    Article  CAS  Google Scholar 

  63. Bard AJF, Faulkner LR (1980) Electrochemical methods: Fundamental and applications, vol 2. John Wiley & Sons, New York

    Google Scholar 

  64. Trasatti S (1981) Studies in physical and theoretical chemistry, Pt. B., vol 1. Electrodes of conductive metallic oxides. Elsevier, Amsterdam

    Google Scholar 

  65. Kear G, Walsh FC (2005) Corros Mater 30(6):6–9

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge IIT Gandhinagar and DST Ramanujan fellowship for funding. A. Bisht, B. Gangwar and T. Anupriya are thankful to DST and IIT Gandhinagar for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisht, A., Gangwar, B.P., Anupriya, T. et al. Understanding the electrochemical differences of Pt doped and Pt supported over CeO2 . J Solid State Electrochem 18, 197–206 (2014). https://doi.org/10.1007/s10008-013-2252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2252-7

Keywords

Navigation