Skip to main content
Log in

Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Titania–sulfur (TiO2–S) composite cathode materials were synthesized for lithium–sulfur batteries. The composites were characterized and examined by X-ray diffraction, nitrogen adsorption/desorption measurements, scanning electron microscopy, and electrochemical methods, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. It is found that the mesoporous TiO2 and sulfur particles are uniformly distributed in the composite after a melt-diffusion process. When evaluating the electrochemical properties of as-prepared TiO2–S composite as cathode materials in lithium–sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The results showed that an initial discharge specific capacity of 1,460 mAh/g at 0.2 C and capacity retention ratio of 46.6 % over 100 cycles of composite cathode, which are higher than that of pristine sulfur. The improvements of electrochemical performances were due to the good dispersion of sulfur in the pores of TiO2 particles and the excellent adsorbing effect on polysulfides of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dharmasena P, Stuart L (1993) Science 261:1029–1032

    Article  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  3. Ji XL, Nazar LF (2010) J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  4. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796–799

    Google Scholar 

  5. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A800–A805

    Article  CAS  Google Scholar 

  6. Elazari R, Salitra G, Talyosef Y, Grinblat J, Charislea SK, Xiao A, Affinito J, Aurbach D (2010) J Electrochem Soc 157:A1131–1138

    Google Scholar 

  7. Mikhaylik YV, Akridge JR (2004) J Electrochem Soc 151:A1969–A1976

    Article  CAS  Google Scholar 

  8. Barchasz C, Leprêtreb JC, Alloinb F, Patoux S (2012) J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  9. Gorkovenko A, Skotheim TA, Xu ZS (2005) US Patent No 6878488

  10. Zheng W, Liu YW, Hu XG, Zhang CF (2006) Electrochimica Acta 51:1330–1335

    Article  CAS  Google Scholar 

  11. Ji XL, Evers S, Black R, Nazar LF (2011) Nat Commun 2:325. doi:10.1038/ncomms1293

    Article  Google Scholar 

  12. Zhang YG, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Powder Technol 235:248–255

    Article  CAS  Google Scholar 

  13. Zhang YG, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) J Mater Chem 1:A295–A301

    Article  Google Scholar 

  14. Zhang Y, Wu XB, Feng H, Wang LZ, Zhang AQ, Xia TC, Dong HC (2009) Int J Hydrogen Energy 34:1556–1559

    Article  CAS  Google Scholar 

  15. Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Cho KK, Gu HB (2007) Phys Scr T129:62–65

    Article  CAS  Google Scholar 

  16. Kang D, Sheng PW, Hanyu Z, Wu JP (2013) Mater Res Bull 48:2079–2083

    Article  Google Scholar 

  17. Zheng W, Hu XG, Zhang CF (2006) Electrochem Solid State Lett 9:A364–A367

    Article  CAS  Google Scholar 

  18. Scott E, Taeeun Y, Nazar LF (2012) J Phys Chem C 116:19653–19658

    Article  Google Scholar 

  19. Zhi WS, Li WY, Judy JC, Zheng GG, Yuan Y, Matthew TM, Po CH, Cui Y (2013) Nat Commun 4:1331–1336

    Article  Google Scholar 

  20. Vijayalakshmi R, Rajendran V (2012) Arch Appl Sci Res 4:1183–1190

    CAS  Google Scholar 

  21. Wu MS, Lee JT, Chiang PC, Lin JC (2007) J Mater Sci 42:259–265

    Article  CAS  Google Scholar 

  22. Deng ZF, Zhang ZA, Lai YQ, Liu J, Liu YX, Li J (2013) Solid State Ionics 238:44–49

    Article  CAS  Google Scholar 

  23. Zhang CF, Wu HB, Yu CZ, Guo ZP, Lou WX (2012) Angew Chem Int Ed 51:9592–9595

    Article  CAS  Google Scholar 

  24. Zhang Y, Wang LZ, Zhang AQ, Song YH, Li XF, Feng H, Wu XB, Du PP (2010) Solid State Ionics 181:835–838

    Article  CAS  Google Scholar 

  25. Jung Y, Kim S (2007) Electrochem Commun 9:249–254

    Article  CAS  Google Scholar 

  26. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045–1048

    Article  CAS  Google Scholar 

  27. Li YJ, Zhan H, Liu SQ, Huang KL, Zhou YH (2010) J Power Sources 195:2945–2949

    Article  CAS  Google Scholar 

  28. James RA, Yuriy VM, Neal W (2004) Solid State Ionics 175:243–245

    Article  Google Scholar 

  29. Doron A, Elad P, Ran E, Gregory S, Scordilis K, John A (2009) J Electrochem Soc 156:A694–A702

    Article  Google Scholar 

  30. Deng ZF, Zhang ZA, Lai YQ, Liu J, Li J, Liu YX (2013) J Electrochem Soc 160:A553–A558

    Article  CAS  Google Scholar 

  31. Fu YZ, Manthiram A (2012) Chem Mater 24:3081–3087

    Article  CAS  Google Scholar 

  32. Rao M, Song XY, Elton JC (2012) J Power Sources 205:474–478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Strategic Emerging Industries Program of Shenzhen, China (JCYJ20120618164543322) and the Science and technology project of Hunan Province (2011FJ3151). We also thank the support of the Engineering Research Center of Advanced Battery Materials, the Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Zhang, Z., Zhang, K. et al. Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17, 2959–2965 (2013). https://doi.org/10.1007/s10008-013-2203-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2203-3

Keywords

Navigation