Skip to main content
Log in

Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Micrometer-sized platinized carbon electrodes have previously been used for the detection of reactive oxygen and nitrogen species (ROS and RNS) in biological systems. Here, we report the preparation and characterization of quartz-sealed platinized carbon nanoelectrodes. Such electrodes can be employed as tips in the scanning electrochemical microscope (SECM). The prepared electrodes were characterized by steady-state voltammetry, scanning electron microscopy, and SECM. In addition to ROS/RNS detection, the high surface area of a platinized nanoelectrode makes it a useful potentiometric probe. Unlike previously fabricated platinized electrodes, carbon electrodes possess a very thin insulating sheath, which is essential for experiments inside biological cells and high-resolution SECM imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan F-RF, Bard AJ (1995) Science 267:871–874

    Article  CAS  Google Scholar 

  2. Murray RW (2008) Chem Rev 108:2688–2720

    Article  CAS  Google Scholar 

  3. Oja SM, Wood M, Zhang B (2013) Anal Chem 85:473–486

    Article  CAS  Google Scholar 

  4. Wehmeyer KR, Deakin MR, Wightman RM (1985) Anal Chem 57:1913–1916

    Article  CAS  Google Scholar 

  5. Morris RB, Franta DJ, White HS (1987) J Phys Chem 91:3559–3564

    Article  CAS  Google Scholar 

  6. Pendley BP, Abruña HD (1990) Anal Chem 62:782–784

    Article  CAS  Google Scholar 

  7. Mirkin MV, Fan FRF, Bard AJ (1992) J Electroanal Chem 328:47–62

    Article  CAS  Google Scholar 

  8. Shao Y, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A (1997) Anal Chem 69:1627–1634

    Article  CAS  Google Scholar 

  9. Slevin CJ, Gray NJ, MacPherson JV, Webb MA, Unwin PR (1999) Electrochem Commun 1:282–288

    Article  CAS  Google Scholar 

  10. Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E (2001) Anal Chem 732:2491–2500

    Article  Google Scholar 

  11. Sun P, Zhang Z, Guo J, Shao Y (2001) Anal Chem 73:5346–5351

    Article  CAS  Google Scholar 

  12. Watkins JJ, Chen J, White HS, Abruña HD, Maisonhaute E, Amatore C (2003) Anal Chem 75:3962–3971

    Article  CAS  Google Scholar 

  13. Zhang B, Zhang Y, White HS (2004) Anal Chem 76:6229–6238

    Article  CAS  Google Scholar 

  14. Krapf D, Wu M-Y, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG (2006) Nano Lett 6:105–109

    Article  CAS  Google Scholar 

  15. Sun P, Mirkin MV (2006) Anal Chem 78:6526–6534

    Article  CAS  Google Scholar 

  16. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Anal Chem 79:4778–4787

    Article  CAS  Google Scholar 

  17. Liu G, Sun C, Li D, Song S, Mao B, Fan C, Tian Z (2010) Adv Mater 22:2148–2150

    Article  CAS  Google Scholar 

  18. Bard AJ, Mirkin MV (eds) (2012) Scanning Electrochemical Microscopy, 2nd edn, CRC, Boca Raton, FL

  19. Mirkin MV, Fan F-RF, Bard AJ (1992) Science 257:364–366

    Article  CAS  Google Scholar 

  20. Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2008) Proc Nat Acad Sci USA 105:443–448

    Article  CAS  Google Scholar 

  21. Velmurugan J, Sun P, Mirkin MV (2009) J Phys Chem C 113:459–464

    Article  CAS  Google Scholar 

  22. Sun P, Mirkin MV (2007) Anal Chem 79:5809–5816

    Article  CAS  Google Scholar 

  23. Bard AJ (2010) J Am Chem Soc 132:7559–7567

    Article  CAS  Google Scholar 

  24. Wang Y, Noël JM, Velmurugan J, Nogala W, Mirkin MV, Lu C, Guille Collignon M, Lemaître F, Amatore C (2012) Proc Natl Acad Sci USA 109:11534–11539

    Article  CAS  Google Scholar 

  25. Arbault S, Pantano P, Jankowski JA, Vuillaume M, Amatore C (1995) Anal Chem 67:3382–3390

    Article  CAS  Google Scholar 

  26. Elliott JM, Birkin PR, Bartlett PN, Attard GS (1999) Langmuir 15:7411–7415

    Article  CAS  Google Scholar 

  27. Evans SAG, Elliott JM, Andrews LM, Bartlett PN, Doyle PJ, Denuault G (2002) Anal Chem 74:1322–1326

    Article  CAS  Google Scholar 

  28. Shim JH, Lee Y (2009) Anal Chem 81:8571–8576

    Article  CAS  Google Scholar 

  29. Kim BM, Murray T, Bau HH (2005) Nanotechnology 16:1317–1320

    Article  CAS  Google Scholar 

  30. Singhal R, Bhattacharyya S, Orynbayeva Z, Vitol E, Friedman G, Gogotsi Y (2010) Nanotechnology 21:015304

    Article  Google Scholar 

  31. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM (2010) Science 329:830–834

    Article  CAS  Google Scholar 

  32. Gao R, Strehle S, Tian B, Cohen-Karni T, Xie P, Duan X, Qing Q, Lieber CM (2012) Nano Lett 12:3329–3333

    Article  CAS  Google Scholar 

  33. Bakker E, Pretsch E (2008) Trends Anal Chem 27:612–618

    Article  CAS  Google Scholar 

  34. Morf WE, Ammann D, Simon W (1987) Bioelectroanalysis 1:309

    Google Scholar 

  35. Yoon YH, Shin T, Shin E-Y, Kang H, Yoo J-S, Park S-M (2007) Electrochim Acta 52:4614–4621

    Article  CAS  Google Scholar 

  36. Vitol E, Schrlau MG, Bhattacharyya S, Ducheyne P, Bau HH, Friedman G, Gogotsi Y (2009) Chem Vap Depos 15:204–208

    Article  CAS  Google Scholar 

  37. Laforge FO, Velmurugan J, Wang Y, Mirkin MV (2009) Anal Chem 81:3143–3150

    Article  CAS  Google Scholar 

  38. Cornut R, Lefrou C (2007) J Electroanal Chem 608:59–66

    Article  CAS  Google Scholar 

  39. Wonderlin WF, Woodfork KA, Strobl JS (1995) J Cell Physiol 165:177–185

    Article  CAS  Google Scholar 

  40. Cai C, Tong Y, Mirkin MV (2004) J Phys Chem B 108:17872–17878

    Article  CAS  Google Scholar 

  41. Orynbayeva Z, Singhal R, Vitol EA, Schrlau MG, Papazoglou E, Friedman G, Gogotsi Y (2012) Nanomed Nanotech Biol Med 8:590–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this work by the National Science Foundation (CHE-1026582) and the Donors of the Petroleum Research Fund administrated by the American Chemical Society is gratefully acknowledged. Carbon electrode development was supported by a Single Cell Science, Engineering and Medicine grant from Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael V. Mirkin or Yury Gogotsi.

Additional information

This research is dedicated to Professor Allen J. Bard on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Gao, Y., Wang, Y. et al. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. J Solid State Electrochem 17, 2971–2977 (2013). https://doi.org/10.1007/s10008-013-2173-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2173-5

Keywords

Navigation