Skip to main content
Log in

Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of electrochemical oxidation of trifluoperazine has been proposed on the basis of cyclic and differential pulse voltammetry at a multiwalled carbon nanotube-modified glassy carbon electrode. The modified electrode exhibits catalytic activity, high sensitivity, and stability. The oxidation process exhibited an adsorption-controlled behavior. Also, depending on this adsorption control, a sensitive electroanalytical method for the determination of trifluoperazine has been investigated by adsorptive stripping differential pulse voltammetry. Under the optional conditions, the anodic peak current was linear to the trifluoperazine concentration over the range of 2.08 10−8 M to 1.67 10−6 M, and the limit of detection was 7.49 10−10 M. The modified electrode had good stability and repeatability, and it was successfully applied to the determination of trifluoperazine in pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balasubramanian K, Burghard M (2006) Anal Bioanal Chem 385:452–468

    Article  CAS  Google Scholar 

  2. Gooding JJ (2005) Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  4. Katz E, Willner I (2004) Chem Phys Chem 5:1085–1104

    Google Scholar 

  5. Yin T, Wei W, Zeng J (2006) Anal Bioanal Chem 386:2087–2094

    Article  CAS  Google Scholar 

  6. Angeles GA, Loĭpez BP, Pardave MP, Silva MTR, Alegret S (2008) Carbon 46:898–906

    Article  Google Scholar 

  7. Li Y, Wang P, Wang L, Lin X (2007) Biosens Bioelectron 22:3120–3125

    Article  CAS  Google Scholar 

  8. Bruera E, Nemann CM (1998) Psychology 7:346–358

    CAS  Google Scholar 

  9. Holroyd S, Seward RL (1999) Clin Pharmacol Ther 66:323–325

    Article  CAS  Google Scholar 

  10. Basavaiah K, Krishnamurthy G (1998) Talanta 46:665–670

    Article  CAS  Google Scholar 

  11. Basavaiah K, Krishnamurthy G (1998) Talanta 47:59–66

    Article  CAS  Google Scholar 

  12. Abdel-Moety EM, Al-Rashood KA, Rauf A, Khattab NA (1996) J Pharm Biomed Anal 14:1639–1644

    Article  CAS  Google Scholar 

  13. Kumazawa T, Seno H, Watanabe-Suzuki K, Hattori H, Ishii A, Sato K (2000) J Mass Spectr 35:1091–1099

    Article  CAS  Google Scholar 

  14. Maurer H, Pfleger K (1984) J Chromatogr 306:125–145

    Article  CAS  Google Scholar 

  15. Hassan AK, Ameen ST, Saad B, Al-Aragi SM (2009) Anal Sci 25:1295–1299

    Article  CAS  Google Scholar 

  16. Huang F, Yan QP, Zheng BZ (2005) Wuhan Univ J Nat Sci 10:435

    Article  CAS  Google Scholar 

  17. Peng TZ, Yang ZP, Lu RS (1990) Acta Pharmaceutica Sinica 25:277–283

    CAS  Google Scholar 

  18. Jarbawi TB, Heineman WR (1986) Anal Chim Acta 186:11–19

    Article  CAS  Google Scholar 

  19. Jin G, Huang F, Li W, Yu S, Zhang S, Kong J (2008) Talanta 74:815–820

    Article  CAS  Google Scholar 

  20. Brett CMA, Oliveira-Brett AM (1993) Cyclic voltammetry and linear sweep techniques. In: Electrochemistry: principles, methods and applications. Oxford University Press, UK, pp 174–198

  21. Laviron E, Roullier L, Degrand C (1980) J Electroanal Chem 112:11–23

    Article  CAS  Google Scholar 

  22. Brown ER, Large RF (1964) In: Weissberger A, Rossiter BW (eds) Physical methods of chemistry. Wiley Interscience, Rochester, p 423

    Google Scholar 

  23. Wang J (ed) (1988) Electroanalytical techniques in clinical chemistry and laboratory medicine. VCH, New York

    Google Scholar 

  24. Kissinger PT, Heineman WR (eds) (1996) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  25. Kauffmann JM, Vire JC, Patriarche GJ, Nunez-Vergara LJ, Squella JA (1987) Electrochim Acta 32:1159

    Article  CAS  Google Scholar 

  26. Uslu B, Yilmaz N, Erk N, Ozkan SA, Senturk Z, Biryol I (1999) J Pharm Biomed Anal 21:215–220

    Article  CAS  Google Scholar 

  27. Uslu B, Özkan SA (2002) Anal Chim Acta 462:49–57

    Article  CAS  Google Scholar 

  28. Ozkan SA, Dogan B, Uslu B (2006) Microchim Acta 153:27–35

    Article  CAS  Google Scholar 

  29. Parvin MH (2011) Electrochem Commun 13:366–369

    Article  CAS  Google Scholar 

  30. Grimshaw J (2000) Electrochemical reactions and mechanism in organic chemistry, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  31. Lin C, Liao W, Chen K, Lin W (2003) Electrophoresis 24:3154–3159

    Article  CAS  Google Scholar 

  32. Khalili F, Henni A, East ALL (2009) J Chem Eng Data 54:2914–2917

    Article  CAS  Google Scholar 

  33. Riley CM, Rosanske TW (eds) (1996) Development and validation of analytical methods. Elsevier Science Ltd, New York

    Google Scholar 

  34. Ermer J, Miller JHMB (eds) (2005) Method validation in pharmaceutical analysis. Weinheim, Wiley-VCH Pub

    Google Scholar 

  35. Swartz ME, Krull IS (1997) Analytical method development and validation. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Dogan-Topal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan-Topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode. J Solid State Electrochem 17, 1059–1066 (2013). https://doi.org/10.1007/s10008-012-1967-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1967-1

Keywords

Navigation