Skip to main content

Advertisement

Log in

An electrochemical process intensified by bipolar iron particles for nitrate removal from synthetic groundwater

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An intensified electrochemical process in an undivided cell using Cu–Zn alloy as cathode and Ti/IrO2–Pt as anode combined with bipolar iron particles (electro-iron system) has been developed. The performance of nitrate reduction was evaluated using synthetic groundwater. Results showed that the nitrate-N dropped rapidly from 50 to less than 10 mg/L within 100 min in the developed system at current densities in the range of 5–30 mA/cm2. Sodium chloride addition was found to have a positive effect on the system performance. No nitrite-N was detected during the electrolysis in the presence of sodium chloride. The concentration of total iron ion in the solutions was found to be less than 0.25 mg/L after 100 min electrolysis. Furthermore, the electrical energy consumption for nitrate reduction in the electro-iron system was saved by approximately 29.4–34.8 % at 5–30 mA/cm2. The developed system has been proved to promote electrochemical nitrate reduction and greatly improve the electrical energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nolan BT, Ruddy BC, Helsel DR (1999) Arch Environ Health 54:242–247

    Article  Google Scholar 

  2. Wolfe AH, Patz JA (2002) Ambio 31:120–125

    Google Scholar 

  3. Cantor KP (1997) Cancer Cause Control 8:292–308

    Article  CAS  Google Scholar 

  4. WHO (2004) Rolling revision of the WHO guidelines for drinking-water quality, nitrates and nitrites in drinking water. World Health Organization, Geneva, Switzerland

  5. Environmental Protection Agency US (1995) Drinking water regulations, health advisories. Office of Water, Washington, DC

    Google Scholar 

  6. Ghafari S, Hasan M, Aroua MK (2007) Bioresour Technol 99:3965–3974

    Article  Google Scholar 

  7. Samatya S, Kabay N, Yüksel Ü, Rda M, Yüksel M (2006) React Funct Polym 66:1206–1214

    Article  CAS  Google Scholar 

  8. Fernández-Nava Y, Maranon E, Soons J, Castrillón L (2008) Bioresour Technol 99:7976–7981

    Article  Google Scholar 

  9. Murphy AP (1991) Nature 350:223–225

    Article  CAS  Google Scholar 

  10. Li M, Feng CP, Zhang ZY, Lei XH, Chen RZ, Sugiura N (2009) J Hazard Mater 171:724–730

    Article  CAS  Google Scholar 

  11. Taguchi S, Feliu JM (2008) Electrochim Acta 53:3626–3634

    Article  CAS  Google Scholar 

  12. Reyter D, Bélanger D, Roué L (2008) Electrochim Acta 53:5977–5984

    Article  CAS  Google Scholar 

  13. Li M, Feng CP, Zhang ZY, Sugiura N (2009) Electrochim Acta 54:4600–4606

    Article  CAS  Google Scholar 

  14. Li H, Chambers JQ, Hobbs DT (1988) J Appl Electrochem 18:454–458

    Article  CAS  Google Scholar 

  15. De Vooys ACA, Van Santen RA, Van Veen JAR (2000) J Mol Catal A Chem 154:203–215

    Article  Google Scholar 

  16. Mácová Z, Bouzek K (2005) J Appl Electrochem 35:1203–1211

    Article  Google Scholar 

  17. Li M, Feng CP, Zhang ZY, Shen ZL, Sugiura N (2009) Electrochem Commun 11:1853–1856

    Article  CAS  Google Scholar 

  18. Talhi B, Monette F, Azzouz A (2011) Electrochem Acta 58:276–284

    Article  CAS  Google Scholar 

  19. De D, Englehardt JD, Kalu EE (2000) J Electrochem Soc 147:4573–4579

    Article  CAS  Google Scholar 

  20. Reyter D, Bélanger D, Roué L (2010) Water Res 44:1918–1926

    Article  CAS  Google Scholar 

  21. Wang DM, Lin HY, Shah SI, Ni CY, Huang CP (2009) Sep Purif Technol 67:127–134

    Article  CAS  Google Scholar 

  22. Kim KW, Kim YJ, Kim IT, Park GI, Lee EH (2005) Electrochim Acta 50:4356–4364

    Article  CAS  Google Scholar 

  23. Vanlangendonck Y, Corbisier D, Lierde A (2005) Water Res 39:3028–3034

    Article  CAS  Google Scholar 

  24. Kim KW, Kim YJ, Kim IT, Park GI, Lee EH (2006) Water Res 40:1431–1441

    Article  CAS  Google Scholar 

  25. Phillips DH, Gu B, Watson DB, Roh Y, Liang L, Lee SY (2000) Environ Sci Technol 34:4169–4176

    Article  CAS  Google Scholar 

  26. Tsai YJ, Chou FC, Cheng TC (2009) J Hazard Mater 163:743–747

    Article  CAS  Google Scholar 

  27. Hwang YH, Kim DG, Shin HS (2011) J Hazard Mater 185:1513–1521

    Article  CAS  Google Scholar 

  28. Weber EJ (1996) Environ Sci Technol 30:716–719

    Article  CAS  Google Scholar 

  29. Choe S, Chang YY, Hwang KY, Khim J (2000) Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  30. Yang GCC, Lee HL (2005) Water Res 39:884–894

    Article  CAS  Google Scholar 

  31. Liao CH, Kang SF, Hsu YW (2003) Water Res 37:4109–4118

    Article  CAS  Google Scholar 

  32. Huang YH, Zhang TC (2002) J Environ Eng 128:604–611

    Article  CAS  Google Scholar 

  33. Huang CP, Wang HW, Chiu PC (1998) Water Res 32:2257–2264

    Article  CAS  Google Scholar 

  34. Chew CF, Zhang TC (1998) Water Sci Technol 38:135–142

    CAS  Google Scholar 

  35. Chew CF, Zhang TC (1999) Environ Eng Sci 16:389–401

    Article  CAS  Google Scholar 

  36. Katsounaros I, Dortsiou M, Kyriacou G (2009) J Hazard Mater 171:323–327

    Article  CAS  Google Scholar 

  37. Vlyssides AG, Karlis PK, Rori N, Zorpas AA (2002) J Hazard Mater 95:215–226

    Article  CAS  Google Scholar 

  38. Katsounaros I, Kyriacou G (2008) Electrochim Acta 53:5477–5484

    Article  CAS  Google Scholar 

  39. Czarnetzki LR, L. Janssen JJ (1992) J Appl Electrochem 22:315–324

    Article  CAS  Google Scholar 

  40. Huang YH, Zhang TC (2004) Water Res 38:2631–2642

    Article  CAS  Google Scholar 

  41. Cheng H, Scott K, Christensen PA (2005) Chem Eng J 108:257–268

    Article  CAS  Google Scholar 

  42. Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Electrochim Acta 52:6237–6247

    Article  CAS  Google Scholar 

  43. Devkota LM, Williams DS, Matta JH, Albertson OE, Grasso D, Fox P (2000) Water Environ Res 72:610–617

    Article  CAS  Google Scholar 

  44. Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM (2010) Anal Chem 82:8766–8774

    Article  Google Scholar 

  45. Loan M, Newman OMG, Cooper RMG, Farrow JB, Parkinson GM (2006) Hydrometallurgy 81:104–129

    Article  CAS  Google Scholar 

  46. WHO (2006) Water sanitation and health (WSH): guidelines for drinking-water quality, 3rd ed. World Health Organization, Geneva, Switzerland

Download references

Acknowledgments

This was supported by National Natural Science Foundation (no. 31140082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Chen or Chuanping Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Zhang, B., Li, M. et al. An electrochemical process intensified by bipolar iron particles for nitrate removal from synthetic groundwater. J Solid State Electrochem 17, 1013–1020 (2013). https://doi.org/10.1007/s10008-012-1956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1956-4

Keywords

Navigation