Skip to main content
Log in

A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

l-Dopa is the intermediate precursor of the neurotransmitter dopamine. Unlike dopamine, l-dopa easily enters the central nervous system. l-Dopa, as one of the catecholamines, is widely used as a source of dopamine in the treatment of most patients with Parkinson’s disease and epilepsy. Graphene (GR) is ideally suited for implementation in electrochemical applications due to its reported large electrical conductivity, large surface area, unique heterogeneous electron transfer rate, and low production costs. This work reports the synthesis of GR using a modified Brodie method and its application for the electrochemical determination of l-dopa in real samples. Electrochemical measurements were performed at glassy carbon electrode modified with graphene (GR/GCE) via drop casting method. Cyclic voltammograms of l-dopa at GR/GCE showed an increased current intensity compared with GCE. All the measurements were done in phosphate buffer solution 0.1 M (pH 6.2) and the oxidation peak was observed at 0.27 V vs. Ag/AgCl. The effect of scan rate showed that oxidation of l-dopa on GR/GCE was surface controlled. The oxidation peak current of l-dopa gradually increased with increasing accumulation time from 0 to 300 s and accumulation potential from 0.0 to 0.3 V and reached the maximum current response at 240 s and 0.2 V for the accumulation time and accumulation potential, respectively. Voltammetric peak currents showed a linear response for l-dopa concentration in the range of 0.04 to 79 μM and a detection limit of 0.022 μM (22 nM). The relative standard deviation for five determinations of 50 μM l-dopa was 0.52 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (2008) Harrison’s principles of internal medicine, 17th edn. McGraw-Hill Companies, New York, Ch. 366

    Google Scholar 

  2. Aminoff MJ, Greenberg DA, Simon RP (2005) Clinical neurology, 6th edn. McGraw-Hill Medical, New York, p 233, Lange Series

    Google Scholar 

  3. Weiner WJ (2002) Parkinson’s disease; diagnosis & clinical management. Demos Medical Publishing, New York

    Google Scholar 

  4. Barnes HV (1998) Clinical medicine. Year Book Medical Publisher, New York, p 745

    Google Scholar 

  5. Misu Y, Goshima Y, Miyamae T (2002) Trends Pharmacol Sci 23:262–268

    Article  CAS  Google Scholar 

  6. Laitinen LV, Bergenheim AT, Hariz MI (1992) J Neurosurg 76:53–61

    Article  CAS  Google Scholar 

  7. Greenhow EJ, Spencer LE (1973) Analyst 98:485–492

    Article  CAS  Google Scholar 

  8. Hasan BA, Khalaf KD, Guardia MDL (1995) Talanta 42:627–633

    Article  CAS  Google Scholar 

  9. Siddhuraju P, Becker K (2001) Food Chem 72:389–394

    Article  CAS  Google Scholar 

  10. Zhao S, Bai W, Wang B, He M (2007) Talanta 73:142–146

    Article  CAS  Google Scholar 

  11. Teixeira MFS, Marcolino-Júnior LH, Fatibello-Filho O, Dockal ER, Bergamini MF (2007) Sens Actuators B 122:549–555

    Article  Google Scholar 

  12. Arvand M, Vaziri M, Vejdani M (2010) Mater Sci Eng C 30:709–714

    Article  CAS  Google Scholar 

  13. Gupta VK, Singh AK, Gupta B (2006) Anal Chim Acta 575:198–204

    Article  CAS  Google Scholar 

  14. Singh AK, Gupta VK, Gupta B (2007) Anal Chim Acta 585:171–178

    Article  CAS  Google Scholar 

  15. Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Anal Proc Incl Anal Commun 32:21–23

    Article  CAS  Google Scholar 

  16. Jain AK, Gupta VK, Sahoo BB, Singh LP (1995) Anal Proc Incl Anal Commun 32:99–101

    Article  Google Scholar 

  17. Jain AK, Gupta VK, Singh LP (1995) Anal Proc Incl Anal Commun 32:263–266

    Article  CAS  Google Scholar 

  18. Gupta VK, Goyal RN, Sharma RA (2009) Anal Chim Acta 647:66–71

    Article  CAS  Google Scholar 

  19. Srivastava SK, Gupta VK, Jain S (1996) Electroanalysis 8:938–940

    Article  CAS  Google Scholar 

  20. Jain AK, Gupta VK, Singh LP, Srivastava P, Raisoni JR (2005) Talanta 65:716–721

    Article  CAS  Google Scholar 

  21. Gupta VK, Singh AK, Gupta B (2007) Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  22. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Sens Actuators B 113:182–186

    Article  Google Scholar 

  23. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Electroanalysis 17:2217–2223

    Article  CAS  Google Scholar 

  24. Gupta VK, Mangla R, Agarwal S (2002) Electroanalysis 14:1127–1132

    Article  CAS  Google Scholar 

  25. Jain AK, Gupta VK, Khurana U, Singh LP (1997) Electroanalysis 9:857–860

    Article  CAS  Google Scholar 

  26. Gupta VK, Goyal RN, Sharma RA (2009) Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  27. Prasad R, Gupta VK, Kumar A (2004) Anal Chim Acta 508:61–70

    Article  CAS  Google Scholar 

  28. Gupta VK, Ludwig R, Agarwal S (2005) Anal Chim Acta 538:213–218

    Article  CAS  Google Scholar 

  29. Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Comb Chem High Throughput Screen 14:284–302

    Article  CAS  Google Scholar 

  30. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Crit Rev Anal Chem 41:282–313

    Article  CAS  Google Scholar 

  31. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) J Electroanal Chem 648:20–27

    Article  CAS  Google Scholar 

  32. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electroanalysis 20:757–764

    Article  CAS  Google Scholar 

  33. Gupta VK, Kumar P (1999) Anal Chim Acta 389:205–212

    Article  CAS  Google Scholar 

  34. Gupta VK, Khayat A, Singh M, Pal MK (2009) Anal Chim Acta 634:36–43

    Article  CAS  Google Scholar 

  35. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Anal Biochem 408:179–196

    Article  CAS  Google Scholar 

  36. Liu A, Wang E (1994) Talanta 41:147–154

    Article  CAS  Google Scholar 

  37. Gupta VK, Jain R, Agarwal S, Mishra R, Dwivedi A (2011) Anal Biochem 410:266–271

    Article  CAS  Google Scholar 

  38. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Anal Biochem 407:79–88

    Article  CAS  Google Scholar 

  39. Gupta VK, Jain R, Jadon N, Radhapyari K (2010) J Colloid Interface Sci 350:330–335

    Article  CAS  Google Scholar 

  40. Goyal RN, Gupta VK, Chatterjee S (2009) Biosens Bioelectron 24:3562–3568

    Article  CAS  Google Scholar 

  41. Goyal RN, Gupta VK, Chatterjee S (2009) Biosens Bioelectron 24:1649–1654

    Article  CAS  Google Scholar 

  42. Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sens Actuators B 134:816–821

    Article  Google Scholar 

  43. Goyal RN, Gupta VK, Chatterjee S (2008) Talanta 76:663–669

    Article  Google Scholar 

  44. Goyal RN, Gupta VK, Chatterjee S (2008) Electrochim Acta 53:5354–5360

    Article  CAS  Google Scholar 

  45. Goyal RN, Gupta VK, Bachheti N (2007) Anal Chim Acta 597:82–89

    Article  CAS  Google Scholar 

  46. Goyal RN, Gupta VK, Oyama M, Bachheti N (2007) Talanta 72:976–983

    Article  CAS  Google Scholar 

  47. Goyal RN, Gupta VK, Oyama M, Bachhet N (2006) Electrochem Commun 8:65–70

    Article  CAS  Google Scholar 

  48. Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Electrochem Commun 7:803–807

    Article  CAS  Google Scholar 

  49. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  50. Geim AK (2009) Science 324:1530–1534

    Article  CAS  Google Scholar 

  51. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  52. Pumera M (2009) Chem Eur J 15:4970–4978

    Article  CAS  Google Scholar 

  53. Pumera M, Iwai H (2009) J Phys Chem C 113:4401–4405

    Article  CAS  Google Scholar 

  54. Pumera M, Iwai H (2009) Chem Asian J 4:554–560

    Article  CAS  Google Scholar 

  55. Dai X, Wildgoose GG, Compton RG (2006) Analyst 131:901–906

    Article  CAS  Google Scholar 

  56. Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) Sens Actuators B 132:356–360

    Article  Google Scholar 

  57. Pumera M, Iwai H, Miyahara Y (2009) Chem Phys Chem 10:1770–1773

    Article  CAS  Google Scholar 

  58. Ambrosi A, Pumera M (2010) Chem Eur J 16:1786–1792

    Article  CAS  Google Scholar 

  59. Pumera M, Miyahara Y (2009) Nanoscale 1:260–265

    Article  CAS  Google Scholar 

  60. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  61. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Nat Nanotechnol 3:206–209

    Article  CAS  Google Scholar 

  62. Lee CG, Wei XD, Kysar JW, Hone J (2008) Science 321:385–388

    Article  CAS  Google Scholar 

  63. Liang JJ, Xu YF, Huang Y, Zhang L, Wang Y, Ma YF, Li FF, Guo TY, Chen YJ (2009) J Phys Chem C 113:9921–9927

    Article  CAS  Google Scholar 

  64. Yu D, Dai L (2010) J Phys Chem Lett 1:467–470

    Article  CAS  Google Scholar 

  65. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  66. Giljie S, Han S, Wang MS, Wang KL, Kaner RB (2007) Nano Lett 7:3394–3398

    Article  Google Scholar 

  67. Baby TT, Jyothirmayee Aravind SS, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Sens Actuators B 145:71–77

    Article  Google Scholar 

  68. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Science 315:490–493

    Article  CAS  Google Scholar 

  69. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  70. Lu YH, Chen W, Feng YP, He PM (200) J Phys Chem B 113:2–5

    Article  Google Scholar 

  71. Wu XM, Hu YJ, Jin J, Zhou NL, Wu P, Zhang H, Cai CX (2010) Anal Chem 82:3588–3596

    Article  CAS  Google Scholar 

  72. Brodie BC (1860) Ann Chim Phys 59:466–472

    Google Scholar 

  73. El-Kosasy AM, Salem MY, El-Bardicy MG, El-Rahman MKA (2008) Chem Pharm Bull 6:753–757

    Article  Google Scholar 

  74. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  75. Xiao F, Zhao F, Li J, Liu L, Zeng B (2008) Electrochim Acta 53:7781–7788

    Article  CAS  Google Scholar 

  76. Daneshgar P, Norouzi P, Ganjali MR, Ordikhani-Seyedlar A, Eshraghi H (2009) Colloids Surf B 68:27–32

    Article  CAS  Google Scholar 

  77. Shahrokhian S, Asadian E (2009) J Electroanal Chem 636:40–46

    Article  CAS  Google Scholar 

  78. Shahrokhian S, Ghalkhani M, Amini MK (2009) Sens Actuators B 137:669–675

    Article  Google Scholar 

  79. Shahrokhian S, Bozorgzadeh S (2006) Electrochim Acta 51:4271–4276

    Article  CAS  Google Scholar 

  80. Akhgar MR, Salari M, Zamani H (2011) J Solid State Electrochem 15:845–853

    Article  CAS  Google Scholar 

  81. Leite FR, Maroneze CM, de Oliveira AB, Santos WT, Damos FS, Luz Rde C (2012) Bioelectrochemistry 86:22–29

    Article  CAS  Google Scholar 

  82. Bergamini MF, Santos AL, Stradiotto NR, Zanoni MVB (2005) J Pharm Biomed Anal 39:54–59

    Article  CAS  Google Scholar 

  83. Prabhu P, Babu RS, Narayanan SS (2011) Sens Actuators B 156:606–614

    Article  Google Scholar 

  84. Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H (2004) J Electroanal Chem 569:47–52

    Article  CAS  Google Scholar 

  85. Hua G, Chen L, Guo Y, Wang X, Shao S (2010) Electrochim Acta 55:4711–4716

    Article  Google Scholar 

  86. Kalachar HCB, Basavanna S, Viswanatha R, Naik YA, Raj DA, Sudhad PN (2011) Electroanalysis 23:1107–1115

    Article  CAS  Google Scholar 

  87. Teixeira MFS, Bergamini MF, Marques CMP, Bocchi N (2004) Talanta 63:1083–1088

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the postgraduate office of the University of Guilan for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Arvand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 16 kb)

Fig. S2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvand, M., Ghodsi, N. A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17, 775–784 (2013). https://doi.org/10.1007/s10008-012-1929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1929-7

Keywords

Navigation