Skip to main content
Log in

A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheets were directly electrodeposited onto a glassy carbon electrode (GCE) from the electrolyte solution containing graphene oxide (GO); the resulting electrode (ED-GO/GCE) was characterized with scanning electron microscopy. A simple and rapid electrochemical method was developed for the determination of theophylline (TP), based on the excellent properties of ED-GO film. The result indicated that ED-GO film-modified GCE exhibited efficient electrocatalytic oxidation for TP with relatively high sensitivity and stability. The electrochemical behavior of TP at ED-GO/GCE was investigated in detail. Under the optimized conditions, the oxidation peak current was proportional to the TP concentration in the range of 8.0 × 10−7 to 6.0 × 10−5 mol L−1 with the detection limit of 1.0 × 10−7 mol L−1 (S/N = 3). The proposed method was successfully applied to green tea samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  2. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  3. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  4. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  5. Lu JJ, Liu SQ, Ge SG, Yan M, Yu JH, Hu XT (2012) Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon-nanotube-graphene composite and functionalized mesoporous materials. Biosens Bioelectron 33:29–35

    Article  Google Scholar 

  6. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  8. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  Google Scholar 

  9. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Article  CAS  Google Scholar 

  10. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8:2012–2016

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  12. Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  13. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech 3:563–568

    Article  CAS  Google Scholar 

  14. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  15. Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748

    Article  CAS  Google Scholar 

  16. Zhou M, Wang YL, Zhai YM, Zhai JF, Ren W, Wang F, Dong SJ (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116–6120

    Article  CAS  Google Scholar 

  17. Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  18. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of grapheme from aqueous suspensions. Phys Chem Chem Phys 13:9187–9193

    Article  CAS  Google Scholar 

  19. Aresta A, Palmisano F, Zambonin CG (2005) Simultaneous determination of caffeine, theobromine, theophylline, paraxanthine and nicotine in human milk by liquid chromatography with diode array UV detection. Food Chem 93:177–181

    Article  CAS  Google Scholar 

  20. Spātaru N, Sarada BV, Tryk DA, Fujishima A (2002) Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 14:721–728

    Article  Google Scholar 

  21. Zwillich CW, Sutton FD, Neff TA, Cohn WM, Matthay RA, Weinberger MM (1975) Theophylline-induced seizures in adults. Ann Intern Med 82:784–787

    CAS  Google Scholar 

  22. Chen QS, Guo ZM, Zhao JW (2008) Identification of green tea's (Camellia sinensis (L.)) quality level according to measurement of main catechins and caffeine contents by HPLC and support vector classification pattern recognition. J Pharm Biomed Anal 48:1321–1325

    Article  CAS  Google Scholar 

  23. Bellia V, Battaglia S, Matera MG, Cazzola M (2006) The use of bronchodilators in the treatment of airway obstruction in elderly patients. Pharmacol Ther 19:311–319

    CAS  Google Scholar 

  24. Nicholso RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  Google Scholar 

  25. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  26. Chen PH, Fryling MA, McCreery RL (1995) Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface. Anal Chem 67:3115–3122

    Article  CAS  Google Scholar 

  27. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  28. Hou SF, Kasner ML, Su SJ, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921

    Article  CAS  Google Scholar 

  29. Wang GX, Wang B, Park J, Yang J, Shen XP, Yao J (2009) Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47:68–72

    Article  CAS  Google Scholar 

  30. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  31. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  32. Brunetti B, Desimoni E, Casati P (2007) Determination of caffeine at a Nafion-covered glassy carbon electrode. Electroanalysis 19:385–388

    Article  CAS  Google Scholar 

  33. Hansen BH, Dryhurst G (1971) Electrochemical oxidation of theophylline at the pyrolytic graphite electrode. J Electroanal Chem 32:405–414

    Article  CAS  Google Scholar 

  34. Hansen BH, Dryhurst G (1971) Electrochemical oxidation of theobromine and caffeine at the pyrolytic graphite electrode. J Electroanal Chem Interface Electrochem 30:407–416

    Article  Google Scholar 

  35. Liu LQ, Xiao F, Li JW, Wu WB, Zhao FQ, Zeng BZ (2008) Platinum nanoparticles decorated multiwalled carbon nanotubes-ionic liquid composite film coated glassy carbon electrodes for sensitive determination of theophylline. Electroanalysis 20:1194–1199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant no. 20975061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, F., Zhang, X. A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. J Solid State Electrochem 17, 167–173 (2013). https://doi.org/10.1007/s10008-012-1867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1867-4

Keywords

Navigation