Skip to main content
Log in

Direct electrochemistry of glucose oxidase immobilized on TiO2–graphene/nickel oxide nanocomposite film and its application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical platform based on nickel oxide (NiO) nanoparticles and TiO2–graphene (TiO2–Gr) was developed for the direct electrochemistry of glucose oxidase (GOD). The electrochemical behavior of the sensor was studied using cyclic voltammetry and chronoamperometry. The experimental results demonstrated that the nanocomposite well retained the activity of GOD and the modified electrode GOD/NiO/TiO2–Gr/GCE exhibited excellent electrocatalytic activity toward the redox of GOD as evidenced by the significant enhancement of redox peak currents in comparison with bare GCE. The biosensor responded linearly to glucose in the range of 1.0–12.0 mM, with a sensitivity of 4.129 μA mM−1 and a detection limit of 1.2 × 10−6 M under optimized conditions. The response time of the biosensor was 3 s. In addition, the developed biosensor possessed good reproducibility and stability, and there was negligible interference from other electroactive components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bayachou M, Boutros JA (2004) J Am Chem Soc 126:12722–12723

    Article  CAS  Google Scholar 

  2. Deng C, Chen J, Nie Z, Si S (2010) Biosens Bioelectron 26:213–219

    Article  CAS  Google Scholar 

  3. Li GX (2006) Protein-based voltammetric sensors. In: Encyclopedia of sensors. Am Sci 8:301–313

    Google Scholar 

  4. Li GX (2007) Protein-based biosensors using nanomaterials. Nanotechnologies for life sciences. Wiley, Nanomater Biosens 8:278–310

    Google Scholar 

  5. Zhang HJ, Toshima N (2011) Appl Catal A 400:9–13

    Article  CAS  Google Scholar 

  6. Wu H, Wang J, Kang XH, Wang CM, Wang DH, Liu J, Aksay IA, Lin YH (2009) Talanta 80:403–406

    Article  CAS  Google Scholar 

  7. Wang CY, Chen SH, Xiang Y, Li WJ, Zhong X, Che X, Li JJ (2011) J Mol Catal B 69:1–7

    Article  CAS  Google Scholar 

  8. Carnes CL, Klabunde KJ (2003) J Mol Catal A 194:227–236

    Article  CAS  Google Scholar 

  9. Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Physica B 862:329–333

    Google Scholar 

  10. Salimi A, Sharifi E, Noorbakhash A, Soltanian S (2007) Biophys Chem 125:540–548

    Article  CAS  Google Scholar 

  11. Salimi A, Sharifi E, Noorbakhash A, Soltanian S (2007) Biosens Bioelectron 22:3146–3153

    Article  CAS  Google Scholar 

  12. Guo SJ, Wen D, Zhai Y, Dong SJ, Wang EK (2010) ACS Nano 4:3959–3968

    Article  CAS  Google Scholar 

  13. Zhou M, Zhai YM, Dong SJ (2009) Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  14. Zhao J, Chen GF, Zhu L, Li GX (2011) Electrochem Commun 13:31–33

    Article  CAS  Google Scholar 

  15. Zhou H, Gan X, Wang Jn, Zhu XL, Li GX (2005) Anal Chem 77:6102–6104

    Article  CAS  Google Scholar 

  16. Zhou H, Liu L, Yin K, Liu SL, Li GX (2006) Electrochem Comm 8:1168–1172

    Article  CAS  Google Scholar 

  17. Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Colloids Surf B 83:78–82

    Article  CAS  Google Scholar 

  18. Fan Y, Huang KJ, Niu DJ, Yang CP, Qing JS (2011) Electrochim Acta 56:4685–4690

    Article  CAS  Google Scholar 

  19. Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Biochem 82:125–130

    CAS  Google Scholar 

  20. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  21. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  22. Wu BY, Hou SH, Yu M, Qin X, Li S, Chen Q (2009) Mater Sci Eng C 29:346–349

    Article  Google Scholar 

  23. Ghica ME, Pauliukaite R, Filho OF, Brett CMA (2009) Sens Actuators B 142:308–315

    Article  Google Scholar 

  24. Liang RP, Fan LX, Wang R, Qiu JD (2009) Electroanalysis 21:1685–1691

    Article  CAS  Google Scholar 

  25. Ragupathy D, Gopalan AI, Lee KP (2009) Electrochem Commun 11:397–401

    Article  CAS  Google Scholar 

  26. Li J, Tan SN, Ge H (1996) Anal Chim Acta 335:137–145

    Article  CAS  Google Scholar 

  27. Manesh KM, Kim HT, Santhosh P, Gopalan AI, Lee KP (2008) Biosens Bioelectron 23:771–779

    Article  CAS  Google Scholar 

  28. Zhu L, Zhai J, Guo Y, Tian C, Yang R (2006) Electroanalysis 18:1842–1846

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20805040), Program for Science and Technology Innovation Talents in Universities of Henan Province (2010HASTIT025), and Excellent Youth Foundation of He’nan Scientific Committee (104100510020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, CX., Huang, KJ., Chen, XM. et al. Direct electrochemistry of glucose oxidase immobilized on TiO2–graphene/nickel oxide nanocomposite film and its application. J Solid State Electrochem 16, 3747–3752 (2012). https://doi.org/10.1007/s10008-012-1813-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1813-5

Keywords

Navigation