Skip to main content
Log in

Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 cathode material prepared by reactions under autogenic pressure at elevated temperatures method is investigated both in aqueous and non-aqueous electrolytes using electrochemical impedance spectroscopy (EIS) technique. In accordance with the results obtained an equivalent circuit is used to fit the impedance spectra. The kinetic parameters of intercalation/de-intercalation processes are evaluated with the help of the same equivalent circuit. The dependence of charge transfer resistance (R ct), exchange current (I 0), double layer capacitance (C dl), Warburg resistance (Z w), and chemical diffusion coefficient (D Li+) on potential during intercalation/de-intercalation is studied. The behavior of EIS spectra and its potential dependence is studied to get the kinetics of the mechanism of intercalation/de-intercalation processes, which cannot be obtained from the usual electrochemical studies like cyclic voltammetry. The results indicate that intercalation and de-intercalation of lithium ions in aqueous solution follows almost similar mechanism in non-aqueous system. D Li+ values are in the range of 10−8 to 10−14 cm2 s−1 in aqueous 5 M LiNO3 and that in non-aqueous 1 M LiAsF6/EC+DMC electrolyte is in the order of 10−12 cm2 s−1 during the intercalation/de-intercalation processes. A typical cell LiTi2 (PO4)3/5 M LiNO3/LiNi1/3Mn1/3Co1/3O2 is constructed and the cycling stability is compared to that with an organic electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Li W, Dahn JR, Wainright DS (1994) Science 264:1115–1118

    Article  CAS  Google Scholar 

  2. Wang H, Huang H, Zeng Y, Zhao F, Chem L (2007) Elctrochem Solid State Lett 10(9):A119–A203

    Google Scholar 

  3. Manjunatha H, Suresh GS, Venkatesha TV (2010) J Solid State Electrochem 15(3):431–445

    Article  Google Scholar 

  4. Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091–2097

    Article  CAS  Google Scholar 

  5. Ozhuku T, Makimura Y (2001) Chem Lett 30:642–643

    Google Scholar 

  6. Li DC, Muta T, Zhang LQ, Yoshio M, Noguchi H (2004) J Power Sources 132:150–155

    Article  CAS  Google Scholar 

  7. Yabuuchi N, Ozhuku T (2003) J Power Sources 171:119–121

    Google Scholar 

  8. Shaju KM, Subba Rao GV, Choudari BVR (2002) Electrochim Acta 48:145–151

    Article  CAS  Google Scholar 

  9. Belharouak I, Sun YK, Li J, Amine K (2003) J Power Sources 123:247–252

    Article  CAS  Google Scholar 

  10. Nukuda T, Inamasu T, Fujii A, Endo D, Nakagava H, Kosono S, Iguchi T, Kuratomi J, Kohono K, Izuchi S, Oshitani M (2005) J Power Sources 146:611–616

    Article  CAS  Google Scholar 

  11. Wang ZX, Sun YC, Chen LQ, Huang XJ (2004) J Electrochem Soc 151:A914–A921

    Article  CAS  Google Scholar 

  12. Choi J, Manthiram A (2004) Electrochem Solid State Lett 7:A365–A367

    Article  CAS  Google Scholar 

  13. Chung, Lu H, Lin YK (2009) J Power Sources 189:40–44

    Article  Google Scholar 

  14. Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) J Phys Chem C 111:12067–12074

    Article  CAS  Google Scholar 

  15. Nobili F, Tossici T, Marassi R, Crocee F, Scrosati B (2002) J Phys Chem B 106:3909–3915

    Article  CAS  Google Scholar 

  16. Bueno PR, Leite ER (2003) J Phys Chem B 107:8868–8877

    Article  CAS  Google Scholar 

  17. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) J Electrochem Soc 146:1279–1289

    Article  CAS  Google Scholar 

  18. Aurbach D, Levi MD, Teller H, Markovsky B, Salitry G (1998) J Electrochem Soc 145:3024–3034

    Article  CAS  Google Scholar 

  19. Mohamedi M, Makino M, Dokko K, Itoh T, Uchida I (2002) Electrochim Acta 48:79–84

    Article  CAS  Google Scholar 

  20. Stiebel KA, Sakai E, Cairns EJ (2002) J Electrochem Soc 149:A61–A68

    Article  Google Scholar 

  21. Thomas MGSR, Bruce PG, Goodenough JB (1985) J Electrochem Soc 132:1521–1528

    Article  CAS  Google Scholar 

  22. Shalini R, Munichandraiah N, Shukla AK (2000) J Power Sources 87:12–20

    Article  Google Scholar 

  23. Sinha NN, Ragupathy P, Vasan HN, Munichandraiah N (2008) Int J Electrochem Sci 3:691–710

    CAS  Google Scholar 

  24. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) Electrochim Acta 54:1199–1203

    Article  CAS  Google Scholar 

  25. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) Electrochim Acta 56:1439–1446

    Article  CAS  Google Scholar 

  26. Wan H, Huang K, Zeng Y, Zhao F, Chen L (2007) Electrochem Solid State Lett 10:A199–A203

    Article  Google Scholar 

  27. Wang GJ, Fu LJ, Wang B, Zhao NH, Wu YP, Holze R (2008) J Appl Electrochem 38:579–581

    Article  CAS  Google Scholar 

  28. Levi MD, Gizhar H, Lancry E, Gofer Y, Levi E, Aurbach D (2004) J Electroanal Chem 569:211–223

    Article  CAS  Google Scholar 

  29. Levi MD, Aurbach D (1997) J Phys Chem B 101:4641–4647

    Article  CAS  Google Scholar 

  30. Levi MD, Aurbach D (1999) Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  31. Ho C, Raistriek ID, Huggins RA (1980) J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  32. Lin B, When Z, Gu Z, Huang S (2008) J Power Sources 175:564–569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Department of Science and Technology, Government of India is greatly acknowledged. The authors gratefully thank Sri. A. V. S. Murthy, honorary secretary, Rastreeya Sikshana Samiti Trust, Bangalore and Dr. P. Yashoda, Principal, S.S.M.R.V. Degree College, for their continuous support and encouragement. Department of Chemistry, St. Joseph’s College, Bangalore, is acknowledged for XRD experimental support. We are greatfull to Prof. Munichandraiah, Inorganic and physical chemistry division, Indian Institute of Science, Bangalore for helping us to carryout experiment in non aqueous electrolytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, K.C., Manjunatha, H., Venkatesha, T.V. et al. Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy. J Solid State Electrochem 16, 3011–3025 (2012). https://doi.org/10.1007/s10008-012-1739-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1739-y

Keywords

Navigation