Skip to main content
Log in

Electrochemical studies of nafion–trimethylsilyl and nafion–trimethylsilyl/Ru complex-modified electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report the electrochemical properties of the nafion–trimethylsilyl (Naf–TMS) polymer. First, we introduce a procedure to dissolve Naf–TMS polymer and the incorporation of ruthenium catalyst complexes into it. The inclusion of the catalysts involved two strategies. The first one concerned the direct formation of a Naf–TMS/Ru complex solution. The second one consists of depositing Naf–TMS solution on a glassy carbon electrode, followed by the incorporation of Ru complexes under potentiodynamic conditions. Electrochemical studies showed the good ion permeation capability of Naf–TMS membranes and its use as a good alternative approach to Nafion ion-conducting membranes. The analytical capabilities of Naf–TMS- and Naf–TMS/Ru-modified glassy carbon electrodes have been tested for the detection of dopamine in standard solutions. Detection limits in the order of nanomolar have been achieved with working ranges extending over three decades in concentration at pH 7.2. Further enhancement in the dopamine oxidation current was achieved by the incorporation of Ru complexes into the Naf–TMS polymer. This study offers a new insight into the investigation of Naf–TMS resin as an ion-conducting polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martin CR, Rubinstein I, Bard AJ (1982) J Am Chem Soc 104:4817–4824

    Article  CAS  Google Scholar 

  2. Rubinstein I, Bard AJ (1980) J Am Chem Soc 102:6641–6642

    Article  CAS  Google Scholar 

  3. Buttry DA, Anson FC (1982) J Am Chem Soc 104:4824–4829

    Article  CAS  Google Scholar 

  4. Zheng L, Chi Y, Shu Q, Dong Y, Zhang L, Chen G (2009) J Phys Chem C 113:20316–20321

    Article  CAS  Google Scholar 

  5. Tazi B, Savadogo O (2000) Electrochim Acta 45:4329–4339

    Article  CAS  Google Scholar 

  6. Feng Z, Zhou J, Xi Y, Lan B, Guo H, Chen H, Zhang Q, Lin Z (2009) J Power Sources 194:1142–1149

    Article  CAS  Google Scholar 

  7. White HS, Leddy J, Bard AJ (1982) J Am Chem Soc 104:4811–4817

    Article  CAS  Google Scholar 

  8. Leddy J, Bard AJ (1985) J Electroanal Chem 189:203–219

    CAS  Google Scholar 

  9. Martin CR, Freiser H (1981) Anal Chem 53:902–904

    Article  CAS  Google Scholar 

  10. George S, Lee HK (2009) J Phys Chem B 113:15445–15454

    Article  CAS  Google Scholar 

  11. Kristensen EW, Kuhr WG, Wightman RM (1987) Anal Chem 59:1752–1757

    Article  CAS  Google Scholar 

  12. Yeager HL, Steck A (1981) J Electrochem Soc 128:1880–1884

    Article  CAS  Google Scholar 

  13. Zolfigol MA, Mohammadpoor-Baltork I, Habibi D, Mirjalili BF, Bamoniri A (2003) Tetrahedon Lett 44:8165–8167

    Article  CAS  Google Scholar 

  14. Mauritz KA, Payne JT (2000) J Membr Sci 168:39–51

    Article  CAS  Google Scholar 

  15. Murata S, Noyori R (1980) Tetrahedon Lett 21:767–768

    Article  CAS  Google Scholar 

  16. Rubinstein I, Martin CR, Bard AJ (1983) Anal Chem 55:1580–1582

    Article  CAS  Google Scholar 

  17. Wang S, Milam J, Ohlin AC, Rambaran VH, Clark E, Ward W, Seymour L, Casey WH, Holder AA, Miao W (2009) Anal Chem 81:4068–4075

    Article  CAS  Google Scholar 

  18. Zen JM, Kumar AS, Chung CR (2003) Anal Chem 75:2703–2709

    Article  CAS  Google Scholar 

  19. Yan X, Li H, Xu Z, Li W (2009) Bioelectrochemistry 74:310–314

    Article  CAS  Google Scholar 

  20. Martin CR, Rhoades TA, Ferguson JA (1982) Anal Chem 54:1639–1641

    Article  CAS  Google Scholar 

  21. Lowry SR, Mauritz KA (1980) J Am Chem Soc 102:4665–4667

    Article  CAS  Google Scholar 

  22. Laporta M, Pegoraro M, Zanderighi L (1999) Phys Chem Chem Phys 1:4619–4628

    Article  CAS  Google Scholar 

  23. Ostrowska J, Narebska A (1983) Colloid Polym Sci 261:93–98

    Article  CAS  Google Scholar 

  24. Heitner-Wirguin C (1979) Polymer 20:371–374

    Article  CAS  Google Scholar 

  25. Omberg KM, Schoonover JR, Bernhard S, Moss JA, Treadway JA, Kober EM, Dyer RB, Meyer TJ (1998) Inorg Chem 37:3505–3508

    Article  CAS  Google Scholar 

  26. Diógenes ICN, Nart FC, Temperini MLA, Moreira IS (2001) Inorg Chem 40:4884–4889

    Article  Google Scholar 

  27. Eller S, Schwarz P, Brimah AK, Fischer RD (1993) Organometallics 12:3232–3240

    Article  CAS  Google Scholar 

  28. Hipps KW, Williams SD, Mazur U (1984) Inorg Chem 23:3500–3505

    Article  CAS  Google Scholar 

  29. Assmann J, Narkhede V, Khodeir L, Löffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) J Phys Chem B 108:14634–14642

    Article  CAS  Google Scholar 

  30. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) J Am Chem Soc 108:2081–2088

    Article  CAS  Google Scholar 

  31. Yonemoto EH, Saupe GB, Schmeh RH, Hubig SM, Riley RL, Iverson BL, Mallouk TE (1994) J Am Chem Soc 116:4786–4795

    Article  CAS  Google Scholar 

  32. Jenkins Y, Friedman AE, Turro NJ, Barton JK (1992) Biochemistry 31:10809–10816

    Article  CAS  Google Scholar 

  33. Mandal K, Hauenstein BL Jr, Demas JN, DeGraff BA (1983) J Phys Chem 87:328–331

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1980) Electrochemical Methods. Wiley, New York, p 218

    Google Scholar 

  35. Yagi M, Kaneko M (2006) Adv Polym Sci 199:143–188

    Article  CAS  Google Scholar 

  36. Kaneko M (2001) Prog Polym Sci 26:1101–1137

    Article  CAS  Google Scholar 

  37. Nagy G, Oke GAG, Rice ME, Adams RN, Moore RB, Szentirmay MN, Martin CR (1985) J Electroanal Chem 188:85–94

    Article  CAS  Google Scholar 

  38. Chen Y, Guo LR, Yang XJ, Jin B, Zheng LM, Xia XH (2009) Bioelectrochemistry 75:26–31

    Article  CAS  Google Scholar 

  39. Roy PR, Okajima T, Ohsaka T (2003) Bioelectrochemistry 59:11–19

    Article  CAS  Google Scholar 

  40. Vasantha VS, Chen SM (2006) J Electroanal Chem 592:77–87

    Article  CAS  Google Scholar 

  41. Kumar SS, Mathiyarasu J, Phani KL (2005) J Electroanal Chem 578:95–103

    Article  CAS  Google Scholar 

  42. Shiroishi H, Ishikawa K, Hirano K, Kaneko M (2001) Polym Adv Technol 12:237–243

    Article  CAS  Google Scholar 

  43. Zhang J, Yagi M, Hou X, Kaneko M (1996) J Electroanal Chem 412:159–164

    Article  Google Scholar 

  44. Hu G, Liu Y, Zhao J, Cui S, Yang Z, Zhang Y (2006) Bioelectrochemistry 69:254–257

    Article  CAS  Google Scholar 

  45. Berfield JL, Wang LC, Reith MEA (1999) J Biol Chem 274:4876–4882

    Article  CAS  Google Scholar 

  46. Bowling R, McCreery RL (1988) Anal Chem 60:605–608

    Article  CAS  Google Scholar 

  47. Baur JE, Kristensen EW, May LJ, Wiedemann DJ, Wightman RM (1988) Anal Chem 60:1268–1272

    Article  CAS  Google Scholar 

  48. Kissinger PT, Heineman WR (1983) J Chem Educ 60:702–706

    Article  CAS  Google Scholar 

  49. Hackett JW, Turro C (1998) Inorg Chem 37:2039–2046

    Article  CAS  Google Scholar 

  50. Oztekin Y, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2011) Sensors and Actuators B Chem 152:37–48

    Article  Google Scholar 

Download references

Acknowledgements

R.A.-S. and G. D.-M. greatly acknowledge support from PROMEP México (103.5/09/4194, 103.5/10/8442) and VIEP-BUAP 2010. Support from CONACyT-México under grants 90939 and 104361 is also acknowledged. R.A.-S. would like to thank Dr. M. Dávila for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Aguilar-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Sánchez, R., Díaz-Caballeros, R.J., Méndez-Bermúdez, J.A. et al. Electrochemical studies of nafion–trimethylsilyl and nafion–trimethylsilyl/Ru complex-modified electrodes. J Solid State Electrochem 16, 2867–2876 (2012). https://doi.org/10.1007/s10008-012-1717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1717-4

Keywords

Navigation